Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 426–435 | Cite as

Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer

  • V. A. GladkikhEmail author
  • V. P. Mamyshev
  • S. L. Odintsov
Optics of Stochastically-Heterogeneous Media


The structure parameter of the refractive index of optical waves C n 2 in the surface air layer is analyzed in the context of results calculated from the structure parameter of the air temperature C n 2 . The estimates for C n 2 based on an optical differential turbulence meter and ultrasonic anemometer-thermometers are compared. The systematic difference between these estimates at a high degree of correlation is noted. The diurnal mean profile of C n 2 in different seasons in territories with a natural landscape and urban territory is obtained and analyzed.


refractive index surface air layer structure parameter diurnal behavior ultrasonic anemometerthermometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurtaud, “The use of weather forecasts to characterise near-surface optical turbulence,” Bound.-Lay. Meteorol. 138 (3), 453–473 (2011).CrossRefADSGoogle Scholar
  2. 2.
    E. L. Andreas, C. W. Fairall, P. O. G. Persson, and P. S. Guest, “Probability distribution for inner scale and refractive index structure parameter and their implications for flux averaging,” J. Appl. Meteorol. Climatol. 42 (9), 1316–1329 (2003).CrossRefADSGoogle Scholar
  3. 3.
    S. Bendersky, N. S. Kopeika, and N. Blaunstein, “Atmospheric optical turbulence over land in middle east coastal environments: Prediction modeling and measurements,” Appl. Opt. 43 (20), 4070–4079 (2004).CrossRefADSGoogle Scholar
  4. 4.
    N. N. Botygina, P. G. Kovadlo, E. A. Kopylov, V. P. Lukin, M. V. Tuev, and A. Yu. Shikhovtsev, “Estimation of the astronomical seeing at the large solar vacuum telescope site from optical and meteorological measurements,” Atmos. Ocean. Opt. 27 (2), 142–146 (2014).CrossRefGoogle Scholar
  5. 5.
    W. M. L. Meijninger, O. K. Hartogensis, W. Kohsiek, J. C. B. Hoedjes, R. M. Zuurbier, and H. A. R. De Bruin, “Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-flevoland field experiment,” Bound.Lay. Meteorol. 105 (1), 37–62 (2002).CrossRefADSGoogle Scholar
  6. 6.
    F. Beirich, J. Bange, O. K. Hartogenesis, S. Raasch, M. Braam, D. van Dinther, D. Graf, B. van Kesteren, A. C. van den Kroonenberg, B. Maronga, S. Martin, and A. F. Moene, “Towards a validation of scintillometer measurements: The LITFASS-2009 experiment,” Bound.-Lay. Meteorol. 144 (1), 83–112 (2012).CrossRefADSGoogle Scholar
  7. 7.
    M. Braam, F. C. Bosveld, and A. F. Moene, “On Monin–Obukhov scaling in and above the atmospheric surface layer: The complexities of elevated scintillometer measurement,” Bound.-Lay. Meteorol. 144 (2), 157–177 (2012).CrossRefADSGoogle Scholar
  8. 8.
    M. Braam, A. F. Moene, and F. Beyrich, “Variability of the structure parameters of temperature and humidity observed in the atmospheric surface layer under unstable condition,” Bound.-Lay. Meteorol. 150 (3), 399–422 (2014).CrossRefADSGoogle Scholar
  9. 9.
    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].Google Scholar
  10. 10.
    V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part I. Typical forms of structure functions,” Atmos. Ocean. Opt. 27 (2), 147–153 (2014).CrossRefGoogle Scholar
  11. 11.
    V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part II. Statistics of structure functions’ parameters,” Atmos. Ocean. Opt. 27 (2), 154–163 (2014).CrossRefGoogle Scholar
  12. 12.
    A. C. Kroonenberg, S. Martin, F. Beirich, and J. Bange, “Spatially-averaged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle,” Bound.-Lay. Meteorol. 142 (1), 55–77 (2012).CrossRefADSGoogle Scholar
  13. 13.
    Laser Beam Propagation in the Atmosphere, Ed. by D. Strobena (Mir, Moscow, 1981) [in Russian].Google Scholar
  14. 14.
    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7 21–25, (2009).Google Scholar
  15. 15.
    M. Yu. Arshinov, N. N. Botygina, V. V. Reino, and S. L. Odintsov, “Basic experimental complex,” in Proc. of the XVI Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2009) [in Russian].Google Scholar
  16. 16.
    L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, and V. P. Lukin, “Differential method for wavefront sensor measurements of turbulence parameters and wind velocity,” Atmos. Ocean. Opt. 21 (1), 64–68 (2008).Google Scholar
  17. 17.
    V. P. Lukin, “Differential measurements in turbulence,” Fotonika, No. 5, 16–23 (2010).Google Scholar
  18. 18.
    V. P. Lukin, N. N. Botygina, O. N. Emaleev, A. V. Antoshkin, P. A. Konyaev, V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Simultaneous measurements of structure characteristics of atmospheric refraction by optical and acoustic methods,” Atmos. Ocean. Opt. 25 (1), 6–11 (2012).CrossRefGoogle Scholar
  19. 19.
    V. P. Lukin, N. N. Botygina, V. A. Gladkikh, O. N. Emaleev, P. A. Konyaev, S. L. Odintsov, and A. V. Torgaev, “Comparative measurements of atmospheric turbulence level with optical and acoustic meters,” Opt. Atmos. Okeana 28 (2), 163–166 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Gladkikh
    • 1
    Email author
  • V. P. Mamyshev
    • 1
  • S. L. Odintsov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations