Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 436–440 | Cite as

Localized light jets from radially symmetric nonspherical dielectric microparticles

  • Yu. E. GeintsEmail author
  • A. A. Zemlyanov
  • E. K. Panina
Optics of Clusters, Aerosols, and Hydrosoles


The results of numerical modeling of the near field of light wave scattering (“photonic (nano)jet”—PNJ region) by radially symmetric nonabsorbing dielectric microparticles are presented. It is shown that the homogeneous silica microparticles of different spatial shape and orientation form PNJ of different sizes and amplitudes. Photonic nanojets from hemispheres are of high extent but moderate intensity. Use of microaxicons provides for a record increase in the PNJ length of the order of twenty wavelengths of the incident radiation.


photonic jet method of computational electrodynamics radially symmetric particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12 (7), 1214–1220 (2004).CrossRefADSGoogle Scholar
  2. 2.
    Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microspheres,” Opt. Commun. 283 (23), 4775–4781 (2010).CrossRefADSGoogle Scholar
  3. 3.
    Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “A photonic nanojet calculations in layered radiallyinhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Amer. 28 (8), 1825–1830 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mieresonant dielectric microsphere,” Opt. Express 15 (25), 17334–17342 (2007).CrossRefADSGoogle Scholar
  5. 5.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly-excited transparent dielectric microspheres,” J. Opt. Soc. Amer., B 29 (4), 758–762 (2012).CrossRefADSGoogle Scholar
  6. 6.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jet shaping of mesoscale dielectric spherical particles: Resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).CrossRefADSGoogle Scholar
  7. 7.
    A. Devilez, N. Bonod, B. Stout, D. Gerard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17 (4), 2089–2094 (2009).CrossRefADSGoogle Scholar
  8. 8.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Features of photonic nanojet formation near surfaces of spherical microparticles illuminated by a focused laser beam,” Atmos. Ocean. Opt. 28 (2), 139–144 (2015).CrossRefGoogle Scholar
  9. 9.
    S.-C. Kong, A. Taflove, and V. Backman, “Quasi onedimensional light beam generated by a graded-index microsphere,” Opt. Express 17 (5), 3722–3731 (2009).CrossRefADSGoogle Scholar
  10. 10.
    V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Amer. 27 (10), 1991–1997 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Martin, J. Proust, D. Gerard, J.-L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37 (2012).Google Scholar
  12. 12.
    D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20 (1), 128–140 (2012).CrossRefADSGoogle Scholar
  13. 13.
    V. V. Kotlyar, S. S. Stafeev, and A. Feldman, “Photonic nanojets generated using square-profile microsteps,” Appl. Opt. 53 (24), 5322–5329 (2014).CrossRefADSGoogle Scholar
  14. 14.
    E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).CrossRefADSGoogle Scholar
  15. 15.
    B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Amer., A 11 (4), 1491–1499 (1994).CrossRefADSGoogle Scholar
  16. 16.
    B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: Theory and tests,” J. Opt. Soc. Amer., A 25 (11), 2693–2703 (2008).CrossRefADSGoogle Scholar
  17. 17.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983).Google Scholar
  18. 18.
    R. Harrington, “Origin and development of the method of moments for field computation,” IEEE Antennas Propag. Mag. 32 (3), 31 (1990).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    G. H. Goedecke and S. G. O’Brien, “Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm,” Appl. Opt. 27 (12), 2431–2438 (1988).CrossRefADSGoogle Scholar
  20. 20.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Comparative analysis of spatial shapes of photonic jets from spherical dielectric microparticles,” Atmos. Ocean. Opt. 25 (5), 338–344 (2012).CrossRefGoogle Scholar
  21. 21.
    V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom (2010). doi 10.1117/2.1201002.002578Google Scholar
  22. 22.
    V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (Gr. Brit.) 419, 145–147 (2002).CrossRefADSGoogle Scholar
  23. 23.
    S. Kawata and T. Sugiura, “Movement of micrometersized particles in the evanescent field of a laser beam,” Opt. Lett. 17 (11), 772–774 (1992).CrossRefADSGoogle Scholar
  24. 24.
    K. Taguchi, H. Ueno, T. Hiramatsu, and M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33 (5), 413–414 (1997).CrossRefGoogle Scholar
  25. 25.
    D. Zeng, W. P. Latham, and A. Kar, “Characteristic analysis of a refractive axicon system for optical trepanning,” Opt. Eng. 45 (9), 094302 (2006).CrossRefADSGoogle Scholar
  26. 26.
    H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202 (1), 129–135 (2001).MathSciNetCrossRefGoogle Scholar
  27. 27.
    X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (22), 526–533 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. E. Geints
    • 1
    Email author
  • A. A. Zemlyanov
    • 1
  • E. K. Panina
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations