Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 4, pp 381–386 | Cite as

Adaptive optics system for real-time wavefront correction

  • A. L. RukosuevEmail author
  • A. V. Kudryashov
  • A. N. Lylova
  • V. V. Samarkin
  • Yu. V. Sheldakova
Adaptive and Integral Optics

Abstract

A rapid adaptive system for atmospheric turbulence compensation is considered in the work. It operates with a frequency of 200 Hz. A deformable mirror with 97 piezoactuators as a stacked actuator and a 2-kHz Shack-Hartmann wavefront sensor have been used for the adaptive system design. A dependence of the residual error of a sine signal correction on the speed of system response is also considered.

Keywords

adaptive optics deformable mirror atmospheric turbulence Shack-Hartmann wavefront sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Yu. Kanev and V. P. Lukin, Adaptive Optics. Numeri-cal and Experimental Researches (Publishing House of IAO SB RAS, Tomsk, 2005) [in Russian].Google Scholar
  2. 2.
    V. A. Banakh and I. N. Smalikho, “Laser beam propaga-tion along extended vertical and slant paths in the turbu-lent atmosphere,” Atmos. Ocean. Opt. 6 (4), 233–237 (1993).Google Scholar
  3. 3.
    A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirror for atmospheric adaptive optics applications,” Opt. Eng. 35 (11), 3064–3073 (1996).CrossRefADSGoogle Scholar
  4. 4.
    F. Yu. Kanev, V. P. Lukin, and L. N. Lavrinova, “Dynamic adaptive mirror in the algorithm of phase conjugation,” Atmos. Ocean. Opt. 8 (12), 1061–1064 (1995).Google Scholar
  5. 5.
    A. K. Gupta and S. K. Mishra, “Development of adaptive optics imaging system at IRDE,” in Proc. XXXV OSI Symposium, International Conference on Contemporary Trends in Optics and Opto Electronics, January, 17–19, 2011 (Thiruvananthapuram, India, 2011), pp. 19–21.Google Scholar
  6. 6.
    V. Samarkin, A. Aleksandrov, and A. Kudryashov, “Bimorph mirrors for powerful laser beam correction and formation,” in Proc. SPIE. 4493, 269–276 (2002).CrossRefADSGoogle Scholar
  7. 7.
    A. Rukosuev, A. Alexandrov, V. Zavalova, V. Samarkin, and A. Kudryashov, “Adaptive optical system based on bimorph mirror and Shack–Hartmann wavefront sen-sor,” Proc. SPIE 4493, 261–268 (2002).CrossRefADSGoogle Scholar
  8. 8.
    A. Kudryashov, V. Samarkin, and A. Aleksandrov, “Adaptive optical elements for laser beam control,” Proc. SPIE 4457, 170–178 (2001).CrossRefADSGoogle Scholar
  9. 9.
    P. Bierden, T. Bifano, and S. Cornelissen, “MEMS deformable mirrors for high performance AO applica-tions,” Proc. of the 6th Int. Workshop “Adaptive Optics for Industry and Medicine,” Ed. by Christopher Dainty (National University of Ireland, Ireland, 2007), pp. 65–70.Google Scholar
  10. 10.
    F. Yu. Kanev, V. P. Lukin, B. V. Fortes, and P. A. Kon-yaev, “Numerical model of an atmospheric adaptive optical system. II. Wave-front sensors and control ele-ments,” Atmos. Ocean. Opt. 8 (3), 215–219 (1995).Google Scholar
  11. 11.
    A. G. Aleksandrov, V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, Yu. V. Sheldakova, V. V. Samarkin, and P. N. Romanov, “Shack–Hartmann wavefront sensor for measuring the parameters of high-power pulsed solid-state lasers,” Quantum Electron. 40 (4) 321–327 (2010).CrossRefADSGoogle Scholar
  12. 12.
    Y. Akahane, J. Ma, Y. Fukuda, M. Aoyoma, H. Kir-iyama, K. Yamakawa, J. V. Sheldakova, and A. V. Kudr-yashov, “Characterization of wave-front corrected 100 tW, 10 Hz laser pulses with peak intensities greater than 1020 w/cm2,” Rev. Sci. Instrum. 77 (2), 023102-1-023102-7 (2006).Google Scholar
  13. 13.
    J. V. Sheldakova, A. V. Kudryashov, V. Y. Zavalova, and T. Y. Cherezova, “Beam quality measurements with Shack–Hartmann wavefront sensor and m2-sensor: Comparison of two methods,” Proc. SPIE 6452, 645207 (2007).CrossRefGoogle Scholar
  14. 14.
    A. V. Kudryashov, V. V. Samarkin, Yu. V. Sheldakova, and A. G. Aleksandrov, “Wavefront compensation method using a Shack–Hartmann sensor as an adaptive optical element system,” Optoelectron., Instrum. Data Proc. 48 (2), 153–158 (2012).CrossRefGoogle Scholar
  15. 15.
    V. Samarkin and A. Kudryashov, “Deformable mirrors for laser beam shaping,” Proc. SPIE 7789, 77890B (2010).CrossRefADSGoogle Scholar
  16. 16.
    A. Lylova and A. Kudryashov, “Artificial model of human eye aberrations proceeded in real-time,” in Abstracts of the 9th International Workshop on Adaptive Optics for Industry and Medicine AOIM2013, September 2–6, 2013, Stellenbosch, South Africa, p. 30.Google Scholar
  17. 17.
    D. C. Dayton, S. L. Brown, S. P. Sandven, J. D. Gon-glewski, and A. V. Kudryashov, “Theory and laboratory demonstration on the use of a nematic liquid crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opt. 37 (24), 5579–5589 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. L. Rukosuev
    • 1
    Email author
  • A. V. Kudryashov
    • 1
  • A. N. Lylova
    • 1
  • V. V. Samarkin
    • 1
  • Yu. V. Sheldakova
    • 1
  1. 1.Moscow State University Mechanical Engineering (MAMI)MoscowRussia

Personalised recommendations