Skip to main content

Multiplicative numerical stochastic model of daily sums of liquid precipitation fields and its use for estimating statistical characteristics of extreme precipitation regimes

Abstract

The multiplicative approach to constructing numerical stochastic models of spatial and spatial-temporal fields of daily liquid precipitation sums on a regular grid is considered. The approach involves independent simulation of precipitation indicator fields with a given correlation function and probabilities of precipitation and fields of precipitation sums with the corresponding correlation function and one-dimensional distribution. The final field is the product of these fields. Verification results for the model on studying properties of statistical characteristics of extreme precipitations are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. M. Prigarin and A. Marshak, “Numerical model of broken clouds adapted to results of observations,” Atmos. Ocean. Opt. 18 (3), 236–242 (2005).

    Google Scholar 

  2. 2.

    Ya. P. Dragan, V. A. Rozhkov, and I. N. Yavorskii, Meth-ods of Probabilistic Analysis of the Rhythm of Oceanolog-ical Processes (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  3. 3.

    W. Kleiber, R. W. Katz, and B. Rajagopalan, “Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes,” Water Resour. Res. 48 (1), 11105–11114 (2012).

    Google Scholar 

  4. 4.

    V. A. Ogorodnikov and S. M. Prigarin, Numerical Mod-elling of Random Processes and Fields: Algorithms and Applications (VSP, Utrecht, 1996).

    Google Scholar 

  5. 5.

    M. A. Semenov and E. M. Barrow, “Use of a stochastic weather generator in the development of climate change scenarios,” Clim. Change 35 (4), 397–414 (1997).

    Article  Google Scholar 

  6. 6.

    A. Anisimova, “Numerical simulation of random indica-tor fields of liquid precipitations,” in Proc. of the Confer-ence of Young Scientists of Institute of Computational Mathematics and Mathematical Geophysics SB RAS (ICMMG, Novosibirsk, 1997), pp. 3–15 [in Russian].

    Google Scholar 

  7. 7.

    O. S. Ukhinova and V. A. Ogorodnikov, “Stochastic models of spatial-time fields of precipitation sums,” in Proc. 6th St. Peterburg Workshop on Simulation, 2009, pp. 193–197.

    Google Scholar 

  8. 8.

    S. M. Prigarin, Numerical Simulation Methods for Ran-dom Processes and Fields (ICMMG, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  9. 9.

    A. D. Drobyshev, A. S. Marchenko, V. A. Ogorodnikov, and V. D. Chizhikov, “Statistical structure of time series of daily sums of liquid precipitation in the flat part of Novosibirsk region,” Trudy ZapSibNII Gosko-mgidrometa, No. 86, 44–66 (1989).

    Google Scholar 

  10. 10.

    A. S. Marchenko, “Approximation of an empirical dis-tribution of probabilities of daily sums of liquid precip-itation,” Trudy ZapSibNII Goskomgidrometa, No. 86, 66–74 (1989).

    Google Scholar 

  11. 11.

    N. V. Smirnov and L. N. Bol’shev, Tables for Calculations of Normal Distribution Functions (Izv. AN SSSR, Mos-cow, 1962) [in Russian].

    Google Scholar 

  12. 12.

    S. L Marple, Jr., Digital Spectral Analysis with Applica-tions (Prentice Hall, 1987).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Ogorodnikov.

Additional information

Original Russian Text © V.A. Ogorodnikov, O.V. Sereseva, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogorodnikov, V.A., Sereseva, O.V. Multiplicative numerical stochastic model of daily sums of liquid precipitation fields and its use for estimating statistical characteristics of extreme precipitation regimes. Atmos Ocean Opt 28, 328–335 (2015). https://doi.org/10.1134/S1024856015040107

Download citation

Keywords

  • numerical stochastic model
  • indicator fields
  • precipitation
  • inhomogeneity