Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 4, pp 328–335 | Cite as

Multiplicative numerical stochastic model of daily sums of liquid precipitation fields and its use for estimating statistical characteristics of extreme precipitation regimes

  • V. A. OgorodnikovEmail author
  • O. V. Sereseva
Atmospheric Radiation, Optical Weather, and Climate
  • 23 Downloads

Abstract

The multiplicative approach to constructing numerical stochastic models of spatial and spatial-temporal fields of daily liquid precipitation sums on a regular grid is considered. The approach involves independent simulation of precipitation indicator fields with a given correlation function and probabilities of precipitation and fields of precipitation sums with the corresponding correlation function and one-dimensional distribution. The final field is the product of these fields. Verification results for the model on studying properties of statistical characteristics of extreme precipitations are presented.

Keywords

numerical stochastic model indicator fields precipitation inhomogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Prigarin and A. Marshak, “Numerical model of broken clouds adapted to results of observations,” Atmos. Ocean. Opt. 18 (3), 236–242 (2005).Google Scholar
  2. 2.
    Ya. P. Dragan, V. A. Rozhkov, and I. N. Yavorskii, Meth-ods of Probabilistic Analysis of the Rhythm of Oceanolog-ical Processes (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  3. 3.
    W. Kleiber, R. W. Katz, and B. Rajagopalan, “Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes,” Water Resour. Res. 48 (1), 11105–11114 (2012).Google Scholar
  4. 4.
    V. A. Ogorodnikov and S. M. Prigarin, Numerical Mod-elling of Random Processes and Fields: Algorithms and Applications (VSP, Utrecht, 1996).Google Scholar
  5. 5.
    M. A. Semenov and E. M. Barrow, “Use of a stochastic weather generator in the development of climate change scenarios,” Clim. Change 35 (4), 397–414 (1997).CrossRefGoogle Scholar
  6. 6.
    A. Anisimova, “Numerical simulation of random indica-tor fields of liquid precipitations,” in Proc. of the Confer-ence of Young Scientists of Institute of Computational Mathematics and Mathematical Geophysics SB RAS (ICMMG, Novosibirsk, 1997), pp. 3–15 [in Russian].Google Scholar
  7. 7.
    O. S. Ukhinova and V. A. Ogorodnikov, “Stochastic models of spatial-time fields of precipitation sums,” in Proc. 6th St. Peterburg Workshop on Simulation, 2009, pp. 193–197.Google Scholar
  8. 8.
    S. M. Prigarin, Numerical Simulation Methods for Ran-dom Processes and Fields (ICMMG, Novosibirsk, 2005) [in Russian].Google Scholar
  9. 9.
    A. D. Drobyshev, A. S. Marchenko, V. A. Ogorodnikov, and V. D. Chizhikov, “Statistical structure of time series of daily sums of liquid precipitation in the flat part of Novosibirsk region,” Trudy ZapSibNII Gosko-mgidrometa, No. 86, 44–66 (1989).Google Scholar
  10. 10.
    A. S. Marchenko, “Approximation of an empirical dis-tribution of probabilities of daily sums of liquid precip-itation,” Trudy ZapSibNII Goskomgidrometa, No. 86, 66–74 (1989).Google Scholar
  11. 11.
    N. V. Smirnov and L. N. Bol’shev, Tables for Calculations of Normal Distribution Functions (Izv. AN SSSR, Mos-cow, 1962) [in Russian].Google Scholar
  12. 12.
    S. L Marple, Jr., Digital Spectral Analysis with Applica-tions (Prentice Hall, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations