Skip to main content

Response of 557.7 and 630-nm atomic oxygen emissions to sharp variations in solar wind parameters


The paper presents the study of the 557.7 and 630-nm atomic oxygen emission responses to sharp variations in solar wind parameters caused by shock waves. The optical and geomagnetic data for Eastern Siberia, as well as data on parameters of the interplanetary magnetic field and solar wind, were used for the analysis. An increase in the emission intensity was observed at sharp variations in the speed and density of solar wind plasma in certain cases, whereas the responses were absent in other cases. It is shown that the presence or absence of the responses in the intensity of the emissions does not relate to the disturbance amplitude of the solar wind parameters. It is suggested that the increase in the emission intensity can be caused by electron precipitations from a magnetic trap during interaction between shock waves propagating in the solar wind and the magnetosphere.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. S. Leonovich and V. A. Mazur, “Resonance excitation of standing Alfven waves in an axisymmetric magneto-sphere (monochromatic oscillations),” Planet. Space Sci. 37 (9), 1095–1108 (1989).

    Article  ADS  Google Scholar 

  2. 2.

    M. Meurant, J.-C. Gerard, B. Hubert, V. Coumans, C. Blockx, N. Ostgaard, and S. B. Mende, “Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse,” Geophys. Rev. Lett. 30 (20), 2032 (2003).

    Article  ADS  Google Scholar 

  3. 3.

    J. H. Sastri, Y. N. Huang, T. Shibata, and T. Okuzawa, “Response of equatorial-low latitude ionosphere to sudden expansion of magnetosphere,” Geophys. Rev. Lett. 22 (19), 2649–2652 (1995).

    Article  ADS  Google Scholar 

  4. 4.

    A. Ikeda, K. Yumoto, M. Shinohara, K. Nozaki, A. Yoshikawa, and A. Shinbori, “SC-associated iono-spheric electric fields at low latitude: FM-CW radar observation,” Earth Planet. Sci. XXXII (1), 1–6 (2008).

    Google Scholar 

  5. 5.

    E. L. Afraimovich, E. A. Kosogorov, and L. A. Leonov-ich, “The use of the international GPS network as the global detector GLOBDET simultaneously observing sudden ionospheric disturbances,” Earth, Planets Space 52 (11), 1077–1082 (2000).

    Article  ADS  Google Scholar 

  6. 6.

    E. L. Afraimovich, E. A. Kosogorov, L. A. Leonovich, O. S. Lesyuta, and I. I. Ushakov, “Novel technology for detecting atmospheric disturbances using GPS. Instan-taneous response of the ionosphere to a sudden com-mencement of the strong magnetic storms,” Adv. Space Res. 27 (6–7), 1345–1350 (2001).

    Article  ADS  Google Scholar 

  7. 7.

    E. L. Afraimovich and O. S. Lesyuta, “Instantaneous global ionospheric response to a sudden commence-ment of the strong magnetic storms,” in Proc. Int. Bea-con Satellite Sympos. June 4–6, 2001(Boston College Institute for Scientific Research, Chestnut Hill, 2001), pp. 413–417.

    Google Scholar 

  8. 8.

    A. V. Mikhalev, L. A. Leonovich, N. V. Kostyleva, V. A. Leonovich, and V. V. Mishin, “Response of mid-latitude radiation of the upper atmosphere to the initial phase of magnetic storms,” Solnechno-Zemnaya Fiz., No. 20, 116–120 (2012).

    Google Scholar 

  9. 9.

    K. Shiokawa, T. Ogawa, and Y. Kamide, “Low-latitude auroras observed in Japan: 1999–2004,” J. Geophys. Res. 110, A05202 (2005). doi 10.1029/2004JA010706

    ADS  Google Scholar 

  10. 10.

    A. V. Mikhalev, “Night sky brightness and noise radia-tion from the upper atmosphere in Eastern Siberia after the fall of Chelyabinsk bolide,” Solnechno-Zemnaya Fiz., No. 24, 54–57 2014.

    Google Scholar 

  11. 11.

    L. M. Fishkova, Nightglow of the Midlatitudinal Upper Atmosphere of the Earth (Metsniereba, Tbilisi, 1983) [in Russian].

    Google Scholar 

  12. 12.

    D. R. Bates, “Forbidden oxygen and oxygen lines in the nightglow,” Planet. Space Sci. 26 (10), 897–912 (1978).

    Article  ADS  Google Scholar 

  13. 13.

    S. Chapman, “The absorption and dissociative or ion-izing effect of monochromatic radiation in an atmo-sphere on a rotating Earth. Part II. Grazing incidence,” Proc. Phys. Soc. 43 (26), 483–501 (1931).

    Article  ADS  MATH  Google Scholar 

  14. 14.

    C. A. Barth and A. F. Hildebrandt, “The 5577 Å airglow emission mechanism,” J.Geophys. Res. 66 (3), 985–986 (1961).

    Article  ADS  Google Scholar 

  15. 15.

    D. R. Bates, “Airglow and auroras,” in Applied Atomic Collision Physics (Academic Press, New York, 1982), vol. 1, pp. 149–224.

  16. 16.

    I. S. Gulledge, D. M. Packer, S. G. Tilford, and J. T. Vanderslice, “Intensity profiles of the 6300-Å and 5577-Å OI lines in the night airglow,” J. Geophys. Res. 73 (17), 5535–5547 (1968). doi 10.1029/JA073i017

    Article  ADS  Google Scholar 

  17. 17.

    J. F. Spann, M. Brittnacher, R. Elsen, G. A. Germany, and G. K. Parks, “Initial response and complex polar cap structures of the aurora in response to the January 10, 1997 magnetic cloud,” Geophys. Rev. Lett. 25 (14), 2577–2580 (1998).

    Article  ADS  Google Scholar 

  18. 18.

    D. Chua, G. Parks, M. Brittnacher, W. Peria, G. Ger-many, J. Spann, and C. Carlson, “Energy characteris-tics of auroral electron precipitation: A comparison of substorms and pressure pulse related auroral activity,” J. Geophys. Res., A 106 (4), 5945–5956 (2001).

    Article  ADS  Google Scholar 

  19. 19.

    W. Li, R. M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, L. Chen, J. P. McFadden, and J. W. Bonnel, “Global distributions of suprathermal electrons observed on THEMIS and potential mecha-nisms for access into the plasmasphere,” J. Geophys. Res. 115 (12), J10 (2010). doi 10.1029/2010JA015687

    Google Scholar 

  20. 20.

    N. C. Maynard and A. J. Chen, “Isolated cold plasma regions: Observations and their relation to possible pro-duction mechanisms,” J. Geophys. Res. 80 (3), 1009–1013 (1975).

    Article  ADS  Google Scholar 

  21. 21.

    H. Korth, M. F. Thomsen, J. E. Borovsky, and D. J. McComas, “Plasma sheet access to geosynchro-nous orbit,” J. Geophys. Res., A 104 (11), 25047–25061 (1999).

    Article  ADS  Google Scholar 

  22. 22.

    R. H. W. Friedel, H. Korth, M. G. Henderson, M. F. Thomsen, and J. D. Scudder, “Plasma sheet access to the inner magnetosphere,” J. Geophys. Res., A 106 (4), 5845–5858 (2001). doi 10.1029/2000JA003011

    Article  ADS  Google Scholar 

  23. 23.

    D. E. Rowland and J. R. Wygant, “Dependence of the large-scale inner magnetospheric electric field on geo-magnetic activity,” J. Geophys. Res., A 103 (7), 14959–14964 (1998).

    Article  ADS  Google Scholar 

  24. 24.

    L. L. Lazutin,

  25. 25.

    C. K. Goertz, “Kinetic Alfven waves on auroral field lines,” Planet. Space Sci. 32 (11), 1387–1392 (1984).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. A. Leonovich.

Additional information

Original Russian Text © L.A. Leonovich, A.V. Tashchilin, V.A. Leonovich, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leonovich, L.A., Tashchilin, A.V. & Leonovich, V.A. Response of 557.7 and 630-nm atomic oxygen emissions to sharp variations in solar wind parameters. Atmos Ocean Opt 28, 376–380 (2015).

Download citation


  • ionospheric disturbance
  • airglow
  • geomagnetic storm