Atmospheric and Oceanic Optics

, Volume 28, Issue 4, pp 376–380 | Cite as

Response of 557.7 and 630-nm atomic oxygen emissions to sharp variations in solar wind parameters

  • L. A. LeonovichEmail author
  • A. V. Tashchilin
  • V. A. Leonovich
Optical Instrumentation


The paper presents the study of the 557.7 and 630-nm atomic oxygen emission responses to sharp variations in solar wind parameters caused by shock waves. The optical and geomagnetic data for Eastern Siberia, as well as data on parameters of the interplanetary magnetic field and solar wind, were used for the analysis. An increase in the emission intensity was observed at sharp variations in the speed and density of solar wind plasma in certain cases, whereas the responses were absent in other cases. It is shown that the presence or absence of the responses in the intensity of the emissions does not relate to the disturbance amplitude of the solar wind parameters. It is suggested that the increase in the emission intensity can be caused by electron precipitations from a magnetic trap during interaction between shock waves propagating in the solar wind and the magnetosphere.


ionospheric disturbance airglow geomagnetic storm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Leonovich and V. A. Mazur, “Resonance excitation of standing Alfven waves in an axisymmetric magneto-sphere (monochromatic oscillations),” Planet. Space Sci. 37 (9), 1095–1108 (1989).CrossRefADSGoogle Scholar
  2. 2.
    M. Meurant, J.-C. Gerard, B. Hubert, V. Coumans, C. Blockx, N. Ostgaard, and S. B. Mende, “Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse,” Geophys. Rev. Lett. 30 (20), 2032 (2003).CrossRefADSGoogle Scholar
  3. 3.
    J. H. Sastri, Y. N. Huang, T. Shibata, and T. Okuzawa, “Response of equatorial-low latitude ionosphere to sudden expansion of magnetosphere,” Geophys. Rev. Lett. 22 (19), 2649–2652 (1995).CrossRefADSGoogle Scholar
  4. 4.
    A. Ikeda, K. Yumoto, M. Shinohara, K. Nozaki, A. Yoshikawa, and A. Shinbori, “SC-associated iono-spheric electric fields at low latitude: FM-CW radar observation,” Earth Planet. Sci. XXXII (1), 1–6 (2008).Google Scholar
  5. 5.
    E. L. Afraimovich, E. A. Kosogorov, and L. A. Leonov-ich, “The use of the international GPS network as the global detector GLOBDET simultaneously observing sudden ionospheric disturbances,” Earth, Planets Space 52 (11), 1077–1082 (2000).CrossRefADSGoogle Scholar
  6. 6.
    E. L. Afraimovich, E. A. Kosogorov, L. A. Leonovich, O. S. Lesyuta, and I. I. Ushakov, “Novel technology for detecting atmospheric disturbances using GPS. Instan-taneous response of the ionosphere to a sudden com-mencement of the strong magnetic storms,” Adv. Space Res. 27 (6–7), 1345–1350 (2001).CrossRefADSGoogle Scholar
  7. 7.
    E. L. Afraimovich and O. S. Lesyuta, “Instantaneous global ionospheric response to a sudden commence-ment of the strong magnetic storms,” in Proc. Int. Bea-con Satellite Sympos. June 4–6, 2001(Boston College Institute for Scientific Research, Chestnut Hill, 2001), pp. 413–417.Google Scholar
  8. 8.
    A. V. Mikhalev, L. A. Leonovich, N. V. Kostyleva, V. A. Leonovich, and V. V. Mishin, “Response of mid-latitude radiation of the upper atmosphere to the initial phase of magnetic storms,” Solnechno-Zemnaya Fiz., No. 20, 116–120 (2012).Google Scholar
  9. 9.
    K. Shiokawa, T. Ogawa, and Y. Kamide, “Low-latitude auroras observed in Japan: 1999–2004,” J. Geophys. Res. 110, A05202 (2005). doi 10.1029/2004JA010706ADSGoogle Scholar
  10. 10.
    A. V. Mikhalev, “Night sky brightness and noise radia-tion from the upper atmosphere in Eastern Siberia after the fall of Chelyabinsk bolide,” Solnechno-Zemnaya Fiz., No. 24, 54–57 2014.Google Scholar
  11. 11.
    L. M. Fishkova, Nightglow of the Midlatitudinal Upper Atmosphere of the Earth (Metsniereba, Tbilisi, 1983) [in Russian].Google Scholar
  12. 12.
    D. R. Bates, “Forbidden oxygen and oxygen lines in the nightglow,” Planet. Space Sci. 26 (10), 897–912 (1978).CrossRefADSGoogle Scholar
  13. 13.
    S. Chapman, “The absorption and dissociative or ion-izing effect of monochromatic radiation in an atmo-sphere on a rotating Earth. Part II. Grazing incidence,” Proc. Phys. Soc. 43 (26), 483–501 (1931).CrossRefADSzbMATHGoogle Scholar
  14. 14.
    C. A. Barth and A. F. Hildebrandt, “The 5577 Å airglow emission mechanism,” J.Geophys. Res. 66 (3), 985–986 (1961).CrossRefADSGoogle Scholar
  15. 15.
    D. R. Bates, “Airglow and auroras,” in Applied Atomic Collision Physics (Academic Press, New York, 1982), vol. 1, pp. 149–224.Google Scholar
  16. 16.
    I. S. Gulledge, D. M. Packer, S. G. Tilford, and J. T. Vanderslice, “Intensity profiles of the 6300-Å and 5577-Å OI lines in the night airglow,” J. Geophys. Res. 73 (17), 5535–5547 (1968). doi 10.1029/JA073i017CrossRefADSGoogle Scholar
  17. 17.
    J. F. Spann, M. Brittnacher, R. Elsen, G. A. Germany, and G. K. Parks, “Initial response and complex polar cap structures of the aurora in response to the January 10, 1997 magnetic cloud,” Geophys. Rev. Lett. 25 (14), 2577–2580 (1998).CrossRefADSGoogle Scholar
  18. 18.
    D. Chua, G. Parks, M. Brittnacher, W. Peria, G. Ger-many, J. Spann, and C. Carlson, “Energy characteris-tics of auroral electron precipitation: A comparison of substorms and pressure pulse related auroral activity,” J. Geophys. Res., A 106 (4), 5945–5956 (2001).CrossRefADSGoogle Scholar
  19. 19.
    W. Li, R. M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, L. Chen, J. P. McFadden, and J. W. Bonnel, “Global distributions of suprathermal electrons observed on THEMIS and potential mecha-nisms for access into the plasmasphere,” J. Geophys. Res. 115 (12), J10 (2010). doi 10.1029/2010JA015687Google Scholar
  20. 20.
    N. C. Maynard and A. J. Chen, “Isolated cold plasma regions: Observations and their relation to possible pro-duction mechanisms,” J. Geophys. Res. 80 (3), 1009–1013 (1975).CrossRefADSGoogle Scholar
  21. 21.
    H. Korth, M. F. Thomsen, J. E. Borovsky, and D. J. McComas, “Plasma sheet access to geosynchro-nous orbit,” J. Geophys. Res., A 104 (11), 25047–25061 (1999).CrossRefADSGoogle Scholar
  22. 22.
    R. H. W. Friedel, H. Korth, M. G. Henderson, M. F. Thomsen, and J. D. Scudder, “Plasma sheet access to the inner magnetosphere,” J. Geophys. Res., A 106 (4), 5845–5858 (2001). doi 10.1029/2000JA003011CrossRefADSGoogle Scholar
  23. 23.
    D. E. Rowland and J. R. Wygant, “Dependence of the large-scale inner magnetospheric electric field on geo-magnetic activity,” J. Geophys. Res., A 103 (7), 14959–14964 (1998).CrossRefADSGoogle Scholar
  24. 24.
    L. L. Lazutin, Scholar
  25. 25.
    C. K. Goertz, “Kinetic Alfven waves on auroral field lines,” Planet. Space Sci. 32 (11), 1387–1392 (1984).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. A. Leonovich
    • 1
    Email author
  • A. V. Tashchilin
    • 1
  • V. A. Leonovich
    • 1
  1. 1.Institute of Solar-Terrestrial Physics, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations