Atmospheric and Oceanic Optics

, Volume 28, Issue 4, pp 308–311 | Cite as

Trace atmospheric gases in the Karadag nature reserve in Crimea

  • V. A. LapchenkoEmail author
  • A. M. Zvyagintsev
Atmospheric Radiation, Optical Weather, and Climate


Annual observations of surface concentrations of ozone and other atmospheric trace gases in the Karadag nature reserve, Crimea, are presented. Concentrations of primary air pollutants (oxides of carbon, nitrogen, and sulfur) were several orders of magnitude less than Russian maximum permissible levels throughout the year. Variations in the ozone concentration are close to those on rural terrains of the southern countries of western Europe. The diurnal maximum of ozone concentration is observed 2–5 hours after noon. In seasonal behavior of the ozone concentration, there are two maxima: a major peak in late July – early August, and a lower peak in April. During hot seasons, there were episodes when, for a few days, the ozone level exceeded maximum permissible one-time concentration according to the national sanitary standards, but by no more than 10%. Based on World Health Organization criteria, the air quality on the territory of the reserve and, seemingly, along the entire Black Sea coast of Crimea is totally determined by the ozone concentration.


surface ozone trace atmospheric gases nature reserve seasonal and diurnal variations maximum permissible concentrations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ya. Kondrat’ev, “Monitoring of atmospheric pollu-tion in Europe: the EUROTRAC program,” Atmos. Ocean Opt. 6 (9), 662–666 (1993).Google Scholar
  2. 2.
    Air Quality Guidelines: Global Update 2005, Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide (WHO, Geneve, 2006).Google Scholar
  3. 3.
    N. V. Pankratova, N. F. Elansky, I. B. Belikov, O. V. Lavrova, A. I. Skorokhod, and R. A. Shumsky, “Ozone and nitric oxides in the surface air over North-ern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).CrossRefGoogle Scholar
  4. 4.
    A. M. Zvyagintsev, I. B. Belikov, N. F. Elanskii, I. N. Kuznetsova, Ya. O. Romanyuk, M. G. Sosonkin, and O. A. Tarasova, “Surface ozone concentration vari-ability in Moscow and Kiev,” Rus. Meteorol. Hydrol. 35 (12), 806–812 (2010).CrossRefGoogle Scholar
  5. 5.
    Hygienic rating HR “Maximum Allowable Concentrations (MAC) of Pollutants in the Air of Popu-lated Areas”.Google Scholar
  6. 6.
    O. A. Tarasova, C. A. M. Brenninkmeijer, P. Joeckel, A. M. Zvyagintsev, and G. I. Kuznetsov, “A climatology of surface ozone in the extra tropics: Cluster analysis of observations and model results,” Atmos. Chem. Phys. 7 (24), 6099–6117 (2007).CrossRefADSGoogle Scholar
  7. 7.
    O. B. Blyum, Ya. O. Romanyuk, M. G. Sosonkin, A. M. Zvyagintsev, I. N. Kuznetsova, “Variability of surface ozone concentrations in Kiev, Moscow, and London,” in Proc. of the 2nd International Workshop “Problems of Surface Ozone Monitoring and Ways of Neutralization of Its Adverse Effect” (GPI RAS, Mos-cow, 2013) [in Russian].Google Scholar
  8. 8.
    I. A. Senik, N. F. Elansky, I. B. Belikov, L. V. Lisitsyna, V. V. Galaktionov, and Z. V. Kortunova, “Main patterns of the temporal variability of surface ozone in the region of the town of Kislovodsk at 870 and 2070 m above sea level,” Izv., Atmos. Ocean. Phys. 41 (1), 67–80 (2005).Google Scholar
  9. 9.
    J. A. A. Carnero, J. P. Bolivar, and B. A. de la Morena, “Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain),” Environ. Sci. Pollut. Res. 17 (2), 355–368 (2010).CrossRefGoogle Scholar
  10. 10.
    R. M. Stauffer and A. M. Thompson, “Bay breeze cli-matology at two sites along the Chesapeake bay from 1986–2010: Implications for surface ozone,” J. Atmos. Chem., June 2013. doi 10.1007/s10874-013-9260-yGoogle Scholar
  11. 11.
    C. Duenas, M. C. Fernandez, S. Canete, J. Carretero, and E. Liger, “Assessment of ozone variations and meteorological effects in an urban area in the Mediter-ranean coast,” Sci. Total Environ. 299 (1–3), 97–113 (2002).CrossRefGoogle Scholar
  12. 12.
    B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar
  13. 13.
    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed. (John Wiley & Sons, New York, 2006).Google Scholar
  14. 14.
    U. Feister and K. Balzer, “Surface ozone and meteo-rological predictors on a subregional scale,” Atmos. Environ., A 25 (9), 1781–1790 (1991).CrossRefADSGoogle Scholar
  15. 15.
    D. J. Rasmussen, A. M. Fiore, V. Naik, L. W. Horowitz, S. J. McGinnis, and M. G. Schultz, “Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models,” Atmos. Environ. 47, 142–153 (2012).CrossRefADSGoogle Scholar
  16. 16.
    The European environment. State and Outlook 2010, Syn-thesis(European Environment Agency, Copenhagen, 2010).Google Scholar
  17. 17.
    Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe (2008).Google Scholar
  18. 18.
    A. Ribas and J. Penuelas, “Temporal patterns of surface ozone levels in different habitats of the North Western Mediterranean basin,” Atmos. Environ. 38 (7), 985–992 (2004).CrossRefADSGoogle Scholar
  19. 19.
    W. M. Angevine, C. J. Senff, A. B. White, E. J. Williams, J. Koermer, S. T. K. Miller, R. Talbot, P. E. Johnston, S. A. Mckeen, and T. Downs, “Coastal boundary layer influence on pollutant transport in New England,” J. Appl. Meteorol. 43 (10), 1425–1437 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Station of Background Ecological Monitoring in Karadag Natural ReserveFeodosiya, Republic of CrimeaRussia
  2. 2.Central Aerological ObservatoryDolgoprudny, Moscow oblastRussia

Personalised recommendations