Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 4, pp 318–327 | Cite as

Thermal balance of the underlying surface in Tomsk during 2004–2005

  • N. V. DudorovaEmail author
  • B. D. Belan
Atmospheric Radiation, Optical Weather, and Climate

Abstract

The thermal balance of Tomsk for the period of 2004–2005 is studied. Heat flux to the soil and anthropogenic heat flux are calculated. The energy contribution of phase transitions of water to the net thermal balance is estimated. It is shown that heat is mainly gained due to radiation components (75–100%) from March to September; and from December to February the main contributor is turbulent heat flux, accounting for from 40 to 85% of the net balance. During the autumn period, before formation of snow cover, an important role in the incoming part is played by the heat flux from the soil, acting to increase the turbulent heat flux to the atmosphere. During the warm period, the heat loss is partitioned between the turbulent heat flux and heat losses due to water evaporation (50/50%). Heat lost to the soil makes a relatively small (no more than 10% of the total losses) contribution. In spring, on the expenditure side, there are heat losses due to snow cover melting, which can reach 50% of the total loss, in separate months. Wintertime heat losses are dominated by radiation components.

Keywords

city thermal balance turbulent flux anthropogenic flux evaporation rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Landsberg, Urban Climate (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  2. 2.
    M. I. Budyko, Thermal Balance of the Earth’s Surface (Gidrometeoizdat, Leningrad, 1956) [in Russian].Google Scholar
  3. 3.
    A. M. Obukhov, Turbulence and Atmospheric Dynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  4. 4.
    L. S. Gandin, D. L. Laikhtman, L. T. Matveev, and M. I. Yudin, Foundations of the Dynamic Meteorology (Gidrometeoizdat, Leningrad, 1955) [in Russian].Google Scholar
  5. 5.
    M. I. Budyko, Evaporation in Natural Conditions (Gidrometeoizdat, Leningrad, 1948) [in Russian].Google Scholar
  6. 6.
    L. T. Matveev, Atmospheric Physics (Gidrometeoizdat, St. Petersburg, 2000) [in Russian].Google Scholar
  7. 7.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, V. K. Kovalevskii, A. P. Plotnikov, E. V. Pokrovskii, T. K. Sklyadneva, and G. N. Tolmachev, “Automated station for atmospheric trace gas monitoring,” Meteorol. Gidrol, No. 3, 110–118 (1999).Google Scholar
  8. 8.
    http://lop.iao.ru/activity/?id=torGoogle Scholar
  9. 9.
    V. E. Zuev, B. D. Belan, D. M. Kabanov, V. K. Kova-levskii, O. Yu. Luk’yanov, V. E. Meleshkin, M. K. Miku-shev, M. V. Panchenko, I. E. Penner, E. V. Pokrovskii, S. M. Sakerin, S. A. Terpugova, G. N. Tolmachev, A. G. Tumakov, V. S. Shamanaev, and A. I. Shcherbatov, “The “OPTIK-E” AN-30 aircraft-laboratory for ecolog-ical investigations,” Atmos. Ocean. Opt. 5 (10), 658–663 (1992).Google Scholar
  10. 10.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, V. S. Kozlov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, A. S. Safatov, D. V. Simo-nenkov, G. N. Tolmachev, A. V. Fofonov, V. S. Shama-naev, and V. P. Shmargunov, “Aircraft laboratory Antonov-30 “Optik-E”: 20-year investigations of the environment,” Opt. Atmos. Okeana 22 (10), 950–957 (2009).Google Scholar
  11. 11.
    http://lop.iao.ru/activity/?id=flyGoogle Scholar
  12. 12.
    http://www.meteotomsk.ru/siteGoogle Scholar
  13. 13.
    V. V. Antonovich, B. D. Belan, A. V. Kozlov, D. A. Pes-tunov, and A. V. Fofonov, “Separation of a contribution coming from city to variations of thermodynamic char-acteristics of the air in Tomsk as an example,” Atmos. Ocean. Opt. 18 (8), 570–574 (2005).Google Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    N. V. Dudorova and B. D. Belan, “Radiation balance of the underlying surface in Tomsk in 2004–2005,” Atmos. Ocean. Opt. 28(4), 312–317 (2015).CrossRefGoogle Scholar
  20. 20.
    B. D. Belan, O. A. Pelymskii, and N. V. Uzhegova, “Study of the anthropogenic component of urban heat balance,” Atmos. Ocean. Opt. 22 (4), 441–446 (2009).CrossRefGoogle Scholar
  21. 21.
    E. V. Shein, Course of Soil Physics (Mos. Gos. Univ., Moscow, 2005) [in Russian].Google Scholar
  22. 22.
    L. A. Bekhovykh, S. V. Makarychev, and I. V. Shorina, Grounds for Hydrophysics (AGAU, Barnaul, 2008) [in Russian].Google Scholar
  23. 23.
    A. F. Vadyunina and Z. A. Korchagina, Methods for Investigating Physical Properties of Soils (Agropromiz-dat, Moscow, 1986) [in Russian].Google Scholar
  24. 24.
    V. A. Gladkikh, A. E. Makienko, E. A. Miller, and S. L. Odintsov, “Study of the atmospheric boundary layer parameters under urban conditions with local and remote diagnostics facilities. Part 2. Air temperature and heat flux,” Atmos. Ocean. Opt. 24 (3), 280–287 (2011).CrossRefGoogle Scholar
  25. 25.
    Instructions on Gradient Observations and Detection of Thermal Balance Components (Gidrometeoizdat, Len-ingrad, 1964) [in Russian].Google Scholar
  26. 26.
    P. Brimblecombe, Air Composition and Chemistry (Cambridge University Press, Cambridge, 1986).Google Scholar
  27. 27.
    B. Offerle, C. S. B. Grimmond, and K. Fortuniak, “Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city cen-tre,” Int. J. Climatol. 25 (10), 1405–1419 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations