Skip to main content
Log in

Propagation of ultrashort laser pulses in dry and humid air

Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Cite this article

Abstract

Propagation of an ultrashort laser pulse in the atmosphere is considered with allowance for diffraction and dispersion properties of the atmosphere. Results of numerical simulation of the propagation of pulses with a duration from several to tens of femtoseconds in air at a room temperature are presented. A rapid spreading of such pulses under the corrected Gaussian form of the time envelope is shown. The propagation of a pulse with a negative initial chirp in dry and humid air is calculated; the chirp makes it possible to partially compensate dispersion and diffraction effects. The distance at which the pulse duration becomes minimal is derived as a function of air humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V. E. Zuev, Laser Beam in the Atmosphere (Plenum Publishing Corporation, New York, 1982).

    Book  Google Scholar 

  2. S. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short pulses in the atmosphere,” Phys. Rev., E 66(4), 046418(21) (2002).

    Article  ADS  Google Scholar 

  3. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).

    Article  ADS  Google Scholar 

  4. I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Muller, Y. Arshinov, S. Bobrovnikov, and I. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt.-LP 41(30), 6451–6462 (2002).

    Article  ADS  Google Scholar 

  5. H.-J. Hartman and A. Laubereau, “Transient infrared spectroscopy on the picosecond time-scale by coherent pulse propagation,” J. Chem. Phys. 80(10), 4663–4670 (1984).

    Article  ADS  Google Scholar 

  6. K. S. Shaik, “Atmospheric propagation effects relevant to optical communications,” TDA Prog. Rep. 42–94(89), 180–200 (1988).

    Google Scholar 

  7. Coherence and Ultrashort Pulse Laser Emission, Ed. by Dr. F.J. Duarte (InTech, Rijeka, 2010).

    Google Scholar 

  8. D. A. Marakasov, “Structure of the spatiotemporal spectrum of a laser beam in the atmosphere under strong turbulence,” Atmos. Ocean. Opt. 26(5), 371–376 (2013).

    Article  Google Scholar 

  9. S. V. Artyshchenko, P. A. Golovinskii, and R. A. Chernov, “Reconstruction of the wavefront phase with the use of a complex neural network,” Opt. Atmos. Okeana 27(10), 932–937 (2014).

    Google Scholar 

  10. S. C. Wilks, J. R. Morris, J. M. Brase, S. S. Olivier, J. R. Henderson, C. Thompson, M. Kartz, and A. J. Ruggerio, “Modeling of adaptive optics-based free-space communications systems,” Proc. SPIE-Int. Soc. Opt. Eng. 4421, 121–128 (2002).

    Google Scholar 

  11. H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121(19), 1789–1793 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. A. Salihi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort pulse code-division multiple access communication systems,” J. Light Technol. 8(3), 478–491 (1990).

    Article  ADS  Google Scholar 

  13. M. A. Porras, “Nonsinusoidal few-cycle pulsed light beams in free space,” J. Opt. Soc. Amer., B 16(9), 1468–1474 (1999).

    Article  ADS  Google Scholar 

  14. E. M. Mikhailov and P. A. Golovinskii, “Description of diffraction and focusing of ultrashort pulses on the basis of a nonstationary Kirchhoff-Sommerfeld method,” JETP 90 (2), 240–249 (2000).

    Google Scholar 

  15. P. Saari, “Evolution of subcycle pulses in nonparaxial Gaussian beams,” Opt. Express 8(11), 590–598 (2001).

    Article  ADS  Google Scholar 

  16. Q. Lin, J. Zheng, and W. Becker, “Subcycle pulsed focused vector beams,” Phys. Rev. Lett. 97(25) 253902(4) (2006).

    Article  ADS  Google Scholar 

  17. S. Hunsche, S. Feng, H. G. Winful, A. Leitenstofer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Amer., A 16(8), 2025–2028 (1999).

    Article  ADS  Google Scholar 

  18. J. Pearce and D. Mittleman, “Defining the Fresnel zone for broadband radiation,” Phys. Rev., E 66(5), 056602(4) (2002).

    Article  ADS  Google Scholar 

  19. D. F. W. Yap, Y. C. Wong, S. P. Koh, S. K. Tiong, and M. A. E. Mohd Tahir, “Effects of second order dispersion in free space optical communication,” J. Appl. Sci. 10(7), 595–598 (2010).

    Article  Google Scholar 

  20. I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84(20), 4080–4082 (2004).

    Article  ADS  Google Scholar 

  21. J.-C. Diels, Ultrashort Pulse Phenomena (Academic Press, London, 2006).

    Google Scholar 

  22. A. Seilmeier, M. Worner, H. J. Hubner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” Appl. Phys. Lett. 53(25), 2468–2470 (1988).

    Article  ADS  Google Scholar 

  23. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).

    Article  ADS  Google Scholar 

  24. J. C. Owens, “Optical refractive index of air: Dependence on pressure, temperature and composition,” Appl. Opt. 6(1), 51–59 (1967).

    Article  ADS  Google Scholar 

  25. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  26. C. F. R. Caron and R. M. Potvlirge, “Free-space propagation of ultrashort pulses: Space-time coupling in Gaussian pulse beams,” J. Mod. Opt. 46(13), 1881–1891 (1999).

    Article  ADS  Google Scholar 

  27. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femstosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  28. I. P. Christov, “Propagation of femtosecond light pulses,” Opt. Commun. 53(6), 362–366 (1985).

    Article  ADS  Google Scholar 

  29. http://spectra.iao.ru

  30. Lin. Qiang, Zheng Jian, and W. Becker, “Subcycle pulsed focused vector beams,” Phys. Rev. Lett. 97(25), 253902–19 (2006).

    Article  ADS  Google Scholar 

  31. V. A. Astapenko, Interaction of Electromagnetic Pulses with Classical and Quantum Systems (Moscow Institute of Physics and Technology, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Manuilovich.

Additional information

Original Russian Text © E.S. Manuilovich, V.A. Astapenko, P.A. Golovinskii, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuilovich, E.S., Astapenko, V.A. & Golovinskii, P.A. Propagation of ultrashort laser pulses in dry and humid air. Atmos Ocean Opt 28, 209–215 (2015). https://doi.org/10.1134/S1024856015030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856015030112

Keywords

Navigation