Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 3, pp 209–215 | Cite as

Propagation of ultrashort laser pulses in dry and humid air

  • E. S. ManuilovichEmail author
  • V. A. Astapenko
  • P. A. Golovinskii
Optical Waves Propagation

Abstract

Propagation of an ultrashort laser pulse in the atmosphere is considered with allowance for diffraction and dispersion properties of the atmosphere. Results of numerical simulation of the propagation of pulses with a duration from several to tens of femtoseconds in air at a room temperature are presented. A rapid spreading of such pulses under the corrected Gaussian form of the time envelope is shown. The propagation of a pulse with a negative initial chirp in dry and humid air is calculated; the chirp makes it possible to partially compensate dispersion and diffraction effects. The distance at which the pulse duration becomes minimal is derived as a function of air humidity.

Keywords

ultrashort pulse air dispersion diffraction propagation humidity chirp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zuev, Laser Beam in the Atmosphere (Plenum Publishing Corporation, New York, 1982).CrossRefGoogle Scholar
  2. 2.
    S. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short pulses in the atmosphere,” Phys. Rev., E 66(4), 046418(21) (2002).ADSCrossRefGoogle Scholar
  3. 3.
    J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Muller, Y. Arshinov, S. Bobrovnikov, and I. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt.-LP 41(30), 6451–6462 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    H.-J. Hartman and A. Laubereau, “Transient infrared spectroscopy on the picosecond time-scale by coherent pulse propagation,” J. Chem. Phys. 80(10), 4663–4670 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    K. S. Shaik, “Atmospheric propagation effects relevant to optical communications,” TDA Prog. Rep. 42–94(89), 180–200 (1988).Google Scholar
  7. 7.
    Coherence and Ultrashort Pulse Laser Emission, Ed. by Dr. F.J. Duarte (InTech, Rijeka, 2010).Google Scholar
  8. 8.
    D. A. Marakasov, “Structure of the spatiotemporal spectrum of a laser beam in the atmosphere under strong turbulence,” Atmos. Ocean. Opt. 26(5), 371–376 (2013).CrossRefGoogle Scholar
  9. 9.
    S. V. Artyshchenko, P. A. Golovinskii, and R. A. Chernov, “Reconstruction of the wavefront phase with the use of a complex neural network,” Opt. Atmos. Okeana 27(10), 932–937 (2014).Google Scholar
  10. 10.
    S. C. Wilks, J. R. Morris, J. M. Brase, S. S. Olivier, J. R. Henderson, C. Thompson, M. Kartz, and A. J. Ruggerio, “Modeling of adaptive optics-based free-space communications systems,” Proc. SPIE-Int. Soc. Opt. Eng. 4421, 121–128 (2002).Google Scholar
  11. 11.
    H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121(19), 1789–1793 (2010).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. A. Salihi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort pulse code-division multiple access communication systems,” J. Light Technol. 8(3), 478–491 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Porras, “Nonsinusoidal few-cycle pulsed light beams in free space,” J. Opt. Soc. Amer., B 16(9), 1468–1474 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    E. M. Mikhailov and P. A. Golovinskii, “Description of diffraction and focusing of ultrashort pulses on the basis of a nonstationary Kirchhoff-Sommerfeld method,” JETP 90 (2), 240–249 (2000).Google Scholar
  15. 15.
    P. Saari, “Evolution of subcycle pulses in nonparaxial Gaussian beams,” Opt. Express 8(11), 590–598 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    Q. Lin, J. Zheng, and W. Becker, “Subcycle pulsed focused vector beams,” Phys. Rev. Lett. 97(25) 253902(4) (2006).ADSCrossRefGoogle Scholar
  17. 17.
    S. Hunsche, S. Feng, H. G. Winful, A. Leitenstofer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Amer., A 16(8), 2025–2028 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    J. Pearce and D. Mittleman, “Defining the Fresnel zone for broadband radiation,” Phys. Rev., E 66(5), 056602(4) (2002).ADSCrossRefGoogle Scholar
  19. 19.
    D. F. W. Yap, Y. C. Wong, S. P. Koh, S. K. Tiong, and M. A. E. Mohd Tahir, “Effects of second order dispersion in free space optical communication,” J. Appl. Sci. 10(7), 595–598 (2010).CrossRefGoogle Scholar
  20. 20.
    I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84(20), 4080–4082 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    J.-C. Diels, Ultrashort Pulse Phenomena (Academic Press, London, 2006).Google Scholar
  22. 22.
    A. Seilmeier, M. Worner, H. J. Hubner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” Appl. Phys. Lett. 53(25), 2468–2470 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).ADSCrossRefGoogle Scholar
  24. 24.
    J. C. Owens, “Optical refractive index of air: Dependence on pressure, temperature and composition,” Appl. Opt. 6(1), 51–59 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1979) [in Russian].Google Scholar
  26. 26.
    C. F. R. Caron and R. M. Potvlirge, “Free-space propagation of ultrashort pulses: Space-time coupling in Gaussian pulse beams,” J. Mod. Opt. 46(13), 1881–1891 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femstosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].Google Scholar
  28. 28.
    I. P. Christov, “Propagation of femtosecond light pulses,” Opt. Commun. 53(6), 362–366 (1985).ADSCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Lin. Qiang, Zheng Jian, and W. Becker, “Subcycle pulsed focused vector beams,” Phys. Rev. Lett. 97(25), 253902–19 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    V. A. Astapenko, Interaction of Electromagnetic Pulses with Classical and Quantum Systems (Moscow Institute of Physics and Technology, Moscow, 2013) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. S. Manuilovich
    • 1
    Email author
  • V. A. Astapenko
    • 1
  • P. A. Golovinskii
    • 1
    • 2
  1. 1.Moscow Institute of Physics and TechnologyMoskovskaya oblast, DolgoprudnyiRussia
  2. 2.Voronezh State University of Architecture and Civil EngineeringVoronezhRussia

Personalised recommendations