Skip to main content

Assessing the possibilities of sensing CH4 and CO2 greenhouse gases above the underlying surface with satellite-based IPDA lidar

Abstract

The IPDA method is used to analyze the possible uncertainties of CH4 and CO2 measurements in the troposphere in the presence of clouds. The choice of wavelengths is substantiated. A software system written for simulating the radiative transfer in satellite sensing is briefly described. It is shown that multiple scattering under cloudy conditions can influence the power of the received signal at a single wavelength; at the same time, the use of a differential scheme mitigates this effect for closely lying wavelengths. We calculate the uncertainties versus underlying surface altitudes and the presence of clouds.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    IPCC Fourth Assessment Report: Climate Change 2007 (Cambridge University Press, Cambridge; New York, 2008).

  2. 2.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inouie, Sh. Maksyutov, T. Machida, and A. V. Fofonov, “Vertical distribution of greenhouse gases above western Siberia by the long-term measurement data,” Atmos. Ocean. Opt. 22(3), 316–322 (2009).

    Article  Google Scholar 

  3. 3.

    Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (National Academies Press, Washington, DC, 2010).

  4. 4.

    S. J. Gerard, S. Biraud, and M. Ramonet, Climate Change-Inverse Modelling: Assessment of Greenhouse Gas Emissions from Ireland (2000-LS-5.3.1-M1). Final Report (National University of Ireland, Galwa; Environmental Protection Agency, 2006).

    Google Scholar 

  5. 5.

    R. Prinn, P. Heimbach, M. Rigby, S. Dutkiewicz, J. M. Melillo, J. M. Reilly, D. W. Kicklighter, and C. Waugh, A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions (MIT Joint Program on the Science and Policy of Global Change, 2011).

    Google Scholar 

  6. 6.

    S. Houweling, F.-M. Breon, I. Aben, C. Rodenbeck, M. Gloor, and M. Heimann, “Inverse modeling of CO2 sources and sinks using satellite data: A synthetic intercomparison of measurement techniques and their performance as a function of space and time,” Atmos. Chem. Phys. 4(2), 523–538 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    J. B. Abshire, H. Riris, W. Hasselbrack, G. Allan, C. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelengthscanned laser sounder instrument,” in Proc. 2009 Conf. on Lasers and Electro-Optics (Optical Society of America, 2009).

    Google Scholar 

  8. 8.

    H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56(2), 127–150 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    T. Yokota, Y. Yoshiba, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results,” SOLA 5, 160–163 (2009).

    Article  Google Scholar 

  10. 10.

    D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, and P. Ciais, “The orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34(4), 700–709 (2004).

    ADS  Article  Google Scholar 

  11. 11.

    E. Dufour and F.-M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: Error analysis,” Appl. Opt. 42(18), 3595–3609 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    G. Ehret, C. Kiemle, M. Wirth, and A. Amediek, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. 90, 593–608 (2008).

    Article  Google Scholar 

  13. 13.

    G. G. Matvienko, G. M. Krekov, and A. Ya. Sukhanov, “Space-borne remote sensing of greenhouse gases by IPDA lidar: A potentialities estimate,” in Proc. of 25th Int. Laser Radar Conf., 2010, St.-Peterburg, p. S11P–02.

    Google Scholar 

  14. 14.

    A. Amediek, A. Fix, G. Ehret, J. Caron, Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Technol. 2, 1487–1536 (2009).

    Article  Google Scholar 

  15. 15.

    V. E. Zuev and G. M. Krekov, Statistical Models of Atmospheric Temperature and Gas Components (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  16. 16.

    B. D. Belan and G. M. Krekov, “The effect of anthropogenic factor on the content of greenhouse gases in the troposphere. 1. Methane,” Opt. Atmos. Okeana 25(4), 361–373 (2012).

    Google Scholar 

  17. 17.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Maksutov, M. Sasakawa, and K. Shimoyama, “The dynamics in vertical distribution of greenhouse gases in the atmosphere,” Opt. Atmos. Okeana 25(12), 1051–1061 (2012).

    Google Scholar 

  18. 18.

    A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).

    Article  Google Scholar 

  19. 19.

    J. C. Gille, D. Ziskin, G. Francis, D. P. Edwards, and M. N. Deeter, “Effects of a spectral surface reflectance on measurements of backscattered solar radiation: Application to the MOPITT methane retrieval”, Atmos. Ocean. Technol. 22(5), 566–574 (2005).

    Article  Google Scholar 

  20. 20.

    G. M. Krekov and M. M. Krekova, “Efficiency of the differential absorption lidar methods under cloudy atmospheric conditions,” Atmos. Ocean. Opt. 18(10), 812–821 (2005).

    Google Scholar 

  21. 21.

    G. M. Krekov, “Technique for the local estimation of fluxes in broadband lazer sensing problems,” Atmos. Ocean. Opt. 23(2), 152–160 (2010).

    Article  Google Scholar 

  22. 22.

    G. G. Matvienko, M. M. Krekova, and V. S. Shamanaev, “Influence of multiple scattering on the formation of space lidar BALKAN-1 cloud signals,” Proc. SPIE 3218 (1997). doi 10.1117/12.295649

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Babchenko.

Additional information

Original Russian Text © S.V. Babchenko, G.G. Matvienko, A.Ya. Sukhanov, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babchenko, S.V., Matvienko, G.G. & Sukhanov, A.Y. Assessing the possibilities of sensing CH4 and CO2 greenhouse gases above the underlying surface with satellite-based IPDA lidar. Atmos Ocean Opt 28, 245–253 (2015). https://doi.org/10.1134/S1024856015030045

Download citation

Keywords

  • atmosphere
  • lidar
  • carbon dioxide
  • methane