Skip to main content

Summer circulation of the Northern Hemisphere atmosphere in periods of strong and weak East Asian monsoon


The composite analysis of monthly average pressure and wind fields in years of strong and weak East Asian summer monsoon (EASM) was performed using ECMWF ERA-40 and ERA-Interim data. The study showed that strong EASM periods are characterized by increased meridional flows over East Asia, especially in the area of interaction of monsoon and midlatitude circulation, where an increased cyclonicity zone appears. The atmospheric pressure is markedly larger in weak than strong EASM periods over the most part of Asia. In the weak EASM periods, the polar vortex is weak; however, troughs over the Kara Sea and the Sea of Okhotsk, as well as over Hudson Bay, are well developed, and the pressure is lowered in the Aleutian Low area. The strongest and significant long-term changes in the pressure field, indicating weakening of the meridional exchange in recent decades, are characteristic for areas of convergence of the meridional flows of the East Asian and African monsoons.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Li, E. R. Cook, F. Chen, and N. Davi, “Summer monsoon moisture variability over China and Mongolia during the past four centuries,” Geophys. Rev. Lett. 36(22), L22705 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    W. Qian, Q. Hu, Y. Zhu, and D.-K. Lee, “Centennialscale dry-wet variations in East Asia,” Clim. Dyn. 21(1), 77–89 (2003).

    Article  Google Scholar 

  3. 3.

    C. Shen, W.-C. Wang, Y. Peng, Y. Xu, and J. Zheng, “Variability of summer precipitation over Eastern China during the last millennium,” Clim. Past. 5(2), 129–141 (2009).

    Article  Google Scholar 

  4. 4.

    C. Zhu, B. Wang, W. Qian, and B. Zhang, “Recent weakening of Northern East Asian summer monsoon: A possible response to global warming,” Geophys. Rev. Lett. 39(9), 4 (2012).

    Google Scholar 

  5. 5.

    H. Wang, “The weakening of the Asian monsoon circulation after the end of 1970’s,” Adv. Atmos. Sci. 18(3), 376–386 (2001).

    Article  Google Scholar 

  6. 6.

    T.-J. Zhou, D.-Yi. Gong, J. Li, and Bo Li, “Detecting and understanding the multi-decadal variability of the East Asian summer monsoon-Recent progress and state of affairs,” Meteorol. Zeitschrift 18(4), 455–467 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    Yi.-H. Ding, Z. Wang, and Y. Sun, “Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences,” Int. J. Climatol. 28(9), 1139–1161 (2008).

    Article  Google Scholar 

  8. 8.

    T. V. Berezhnykh, O. Yu. Marchenko, N. V. Abasov, and V. I. Mordvinov, “Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga river basin,” Geogr. Nat. Resour. 33(3) 223–229 (2012).

    Article  Google Scholar 

  9. 9.

    H. Li, A. Dai, T. Zhou, and J. Lu, “Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000,” Clim. Dynam. 34(4), 501–514 (2010).

    MATH  ADS  Article  Google Scholar 

  10. 10.

    G. Zeng, Zh. Sun, W.-Ch. Wang, and J. Min, “Interdecadal variability of the East Asian summer monsoon and associated atmospheric circulations,” Adv. Atmos. Sci. 24(5), 915–926 (2007).

    Article  Google Scholar 

  11. 11.

    Yi.-H. Ding, Z. Wang, and Y. Sun, “Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part II: Possible causes,” Int. J. Climatol. 29(13), 1926–1944 (2009).

    Article  Google Scholar 

  12. 12.

    P. Pedelabord, Monsoons (Inostrannaya Literatura, Moscow, 1963) [in Russian].

    Google Scholar 

  13. 13.

    S. P. Khromov, “Monsoons in global atmospheric circulation,” in A.I. Voeikov and Modern Problems of Climatology (Gidrometeoizdat, Leningrad, 1956) [in Russian].

    Google Scholar 

  14. 14.

    S. J. Chen and P.-Z. Zhang, “Climatology of deep cyclones over Asia and the Northwest Pacific,” Theor. Appl. Climatol. 54(3–4), 139–146 (1996).

    ADS  Article  Google Scholar 

  15. 15.

    X. Wang, P. Zhai, and C. Wang, “Variations in extratropical cyclone activity in Northern East Asia,” Adv. Atmos. Sci. 23(3), 471–479 (2009).

    Article  Google Scholar 

  16. 16.

    B. Wang, Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G.-X. Wu, “How to measure the strength of the East Asian summer monsoon?,” J. Clim. 21(17), 4449–4463 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    E. Kalnay, M. Kanamitsu, and R. Kistler, “The NCEP/NCAR 40-year Reanalysis Project,” Bull. Amer. Meteorol. Soc. 77(3), 437–471 (1996).

    ADS  Article  Google Scholar 

  18. 18.

    J. K. Gibson, P. Kalberg, and S. Uppala, “The ECMWF Reanalysis (ERA) Project,” ECMWF Newslett., No. 73, 7–17 (1996).

    Google Scholar 

  19. 19.

    T. Inoue and J. Matsumoto, “A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR Reanalysis and ERA-40 for the period 1960–1999,” J. Meteorol. Soc. Jap. 82(3), 951–958 (2004).

    Article  Google Scholar 

  20. 20.

    J.-P. Han and H.-J. Wang, “Features of interdecadal changes of the East Asian Summer monsoon and similarity and discrepancy in ERA-40 and NCEP/NCAR reanalysis data,” Chin. J. Geophys. 50(6), 1444–1453 (2007).

    Article  Google Scholar 

  21. 21.

    A. Sterl, “On the (in-)homogeneity of reanalysis products,” J. Clim. 17(19), 3866–3873 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    D. P. Dee, S. M. Uppala, A. J. Simons, P. Berrisford, P. Poli, S. Kobayshi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljoars, L. Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersback, E. V. Holm, L. Isaksen, P. Kalberg, H. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. Rosnay, C. Tarolato, N. Thepaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).

    ADS  Article  Google Scholar 

  23. 23.

  24. 24.

    O. A. Drozdov, V. A. Vasil’ev, N. V. Kobysheva, A. N. Raevskii, L. K. Smekalova, and E. P. Shkol’nyi, Climatology (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  25. 25.

    B. Ren, R. Lu, and Z. Xiao, “A possible linkage in the interdecadal variability of rainfall over North China and the Sahel,” Adv. Atmos. Sci. 21(5), 699–707 (2004).

    Article  Google Scholar 

  26. 26.

    X. W. Quan, H. F. Diaz, and C. B. Fu, “Interdecadal change in the Asia-Africa summer monsoon and its associated changes in global atmospheric circulation,” Glob. Planet. Change 37(3), 181–188 (2009).

    Google Scholar 

  27. 27.

    G. Huang, Y. Liu, and R. Huang, “The interannual variability of summer rainfall in the arid and semiarid regions of Northern China and its association with the Northern hemisphere circumglobal teleconnection,” Adv. Atmos. Sci. 28(2), 257–268 (2011).

    Article  Google Scholar 

  28. 28.

    L. Hao, J. Min, Y.-H. Ding, and J. Wang, “Relationship between reduction of summer precipitation in North China and atmospheric circulation anomalies,” J. Water Resour. Prot. 2(6), 569–576 (2010).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. Yu. Antokhina.

Additional information

Original Russian Text © O.Yu. Antokhina, P.N. Antokhin, O.S. Kochetkova, V.I. Mordvinov, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antokhina, O.Y., Antokhin, P.N., Kochetkova, O.S. et al. Summer circulation of the Northern Hemisphere atmosphere in periods of strong and weak East Asian monsoon. Atmos Ocean Opt 28, 258–264 (2015).

Download citation


  • East Asian summer monsoon
  • atmospheric general circulation
  • weakening of monsoon
  • geopotential
  • velocity field
  • meridional flows
  • tropospheric troughs