Skip to main content

Effective potential energy surface of HD16O for calculation of highly excited states of nν3 and ν1 + nν3 types

Abstract

A new spectroscopically determined potential energy surface (PES) for HD16O is presented, and rotational-vibrational transitions are calculated using it for low rotational quantum numbers J ≤ 4. This surface is constructed by adjusting a high-accuracy PES by fitting to experimental energy levels of nν3 and ν1 + nν3 types. Seven hundred and forty rotational levels with energies up to 25600 cm−1 and J ≤ 8 were used for the refinement. To improve the extrapolation properties of the empirical PES, the fitting was applied to experimental and ab initio energy levels.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Partridge and D. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4639 (1997).

    Article  ADS  Google Scholar 

  2. 2.

    D. W. Schwenke and H. Partridge, “Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities,” J. Chem. Phys. 113, 6592–6597 (2000).

    Article  ADS  Google Scholar 

  3. 3.

    B. A. Voronin, “Analysis of experimental spectra and ab initio calculations of water vapor,” Rus. Phys. J. 42 (3), 319–325 (1999).

    Article  MathSciNet  Google Scholar 

  4. 4.

    O. L. Polyansky, A. G. Császár, S. V. Shirin, N. F. Zobov, P. Barletta, J. Tennyson, D. W. Schwenke, and P. J. Knowles, “High-accuracy ab initio rotation-vibration transitions for water,” Science 299, 539–542 (2003).

    Article  ADS  Google Scholar 

  5. 5.

    R. J. Barber, J. Tennyson, G. J. Harris, and R. Tolchenov, “A high accuracy computed water line list, 2006,” Month. Notic. Roy. Astron. Soc. 368, 1087–1094 (2006).

    Article  ADS  Google Scholar 

  6. 6.

    P. Barletta, S. V. Shirin, N. F. Zobov, O. L. Polyansky, J. Tennyson, E. F. Valeev, and A. G. Császár, “CVRQD ab initio adiabatic ground-state potential energy surfaces for the water molecule,” J. Chem. Phys. 125, 204307 (2006).

    Article  ADS  Google Scholar 

  7. 7.

    S. V. Shirin, N. F. Zobov, R. I. Ovsyannikov, O. L. Polyansky, and J. Tennyson, “Water line lists close to experimental accuracy using a spectroscopically determined potential energy surface for H2 16O, H2 18O and H2 17O,” J. Chem. Phys. 128, 224306 (2008).

    Article  ADS  Google Scholar 

  8. 8.

    I. I. Bubukina, N. F. Zobov, O. L. Polyanskii, S. V. Shirin, and S. N. Yurchenko, “Optimized semiempirical potential energy surface for H2 16O up to 26 000 cm−1,” Opt. Spectrosc. 110 (2), 160–166 (2011).

    Article  ADS  Google Scholar 

  9. 9.

    O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation-vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem., A 117, 9633–9643 (2013).

    Article  Google Scholar 

  10. 10.

    S. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system Spectroscopy of Atmospheric Gases. The structure and main functions,” Atmos. Ocean. Opt. 18 (9), 685–695 (2005).

    Google Scholar 

  11. 11.

    S. N. Yurchenko, B. A. Voronin, R. N. Tolchenov, N. Doss, O. V. Naumenko, W. Thiel, and J. Tennyson, “Potential energy surface of HDO up to 25 000 cm−1,” J. Chem. Phys. 128, 044312/1–044312/12 (2008).

    Google Scholar 

  12. 12.

    L. Lodi, R. N. Tolchenov, J. Tennyson, A. E. Lynas-Gray, S. V. Shirin, N. F. Zobov, O. L. Polyansky, A. G. Császár, J. van Stralen, and L. Visscher, “A high accuracy dipole surface for water,” J. Chem. Phys. 128 (4), 044304 (2008).

    Article  ADS  Google Scholar 

  13. 13.

    B. A. Voronin, J. Tennyson, R. N. Tolchenov, A. A. Lugovskoy, and S. N. Yurchenko, “A high accuracy computed line list for the HDO molecule,” Month. Not. Roy. Astron. Soc. 402, 492–496 (2010).

    Article  ADS  Google Scholar 

  14. 14.

    M. Grechko, O. V. Boyarkin, T. R. Rizzo, P. Maksyutenko, N. F. Zobov, S. V. Shirin, L. Lodi, J. Tennyson, A. G. Császár, and O. L. Polyansky, “State-selective spectroscopy of water up to its first dissociation limit,” J. Chem. Phys. 131, 221105 (2009).

    Article  ADS  Google Scholar 

  15. 15.

    O. L. Polyansky, N. F. Zobov, I. I. Mizus, L. Lodi, S. N. Yurchenko, J. Tennyson, A. G. Császár, and O. V. Boyarkin, “Global spectroscopy of the water monomer,” Phil. Trans. Roy. Soc. London, A 370, 2728–2748, 2012.

    Article  ADS  Google Scholar 

  16. 16.

    O. V. Boyarkin, M. A. Koshelev, O. Aseev, P. Maksyutenko, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson, and O. L. Polyansky, “Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations,” Chem. Phys. Lett. 568–569, 14–20 (2013).

    Article  Google Scholar 

  17. 17.

    P. Theule, A. Callegari, T. R. Rizzo, and J. S. Muenter, “Dipole moments of HDO in highly excited vibrational states measured by Stark induced photofragment quantum beat spectroscopy,” J. Chem. Phys. 122, 124312 (2005).

    Article  ADS  Google Scholar 

  18. 18.

    B. A. Voronin, O. V. Naumenko, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, R. N. Tolchenov, A. C. Vandaele, and J. Tennyson, “HDO absorption spectrum above 11500 cm−1: Assignment and dynamics,” J. Mol. Spectrosc. 244 (1), 87–101 (2007).

    Article  ADS  Google Scholar 

  19. 19.

    S. N. Yurchenko, M. Carvajal, P. Jensen, F. Herregodts, and T. R. Huet, “Potential parameters of PH3 obtained by simultaneous fitting of ab initio data and experimental vibrational band origins,” Chem. Phys. 290 (1), 59–67 (2003).

    Article  ADS  Google Scholar 

  20. 20.

    P. Barletta, J. Tennyson, S. V. Shirin, N. F. Zobov, O. L. Polyansky, E. F. Valeev, and A. G. Császár, “CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule,” J. Chem. Phys. 125, 204307 (2006).

    Article  ADS  Google Scholar 

  21. 21.

    J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Ramanlal, and N. F. Zobov, “DVR3D: A program suite for the calculation of rotation-vibration spectra of triatomic molecules,” Comput. Phys. Commun. 163 (2), 85–116 (2004).

    Article  ADS  Google Scholar 

  22. 22.

    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S.-M. Hu, S. N. Mikhailenko, and B. A. Voronin, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II: Energy levels and transition wavenumbers for HD16O, HD17O, HD18O,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2160–2184 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. A. Voronin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronin, B.A., Yurchenko, S.N., Voronina, S.S. et al. Effective potential energy surface of HD16O for calculation of highly excited states of nν3 and ν1 + nν3 types. Atmos Ocean Opt 28, 133–138 (2015). https://doi.org/10.1134/S1024856015020153

Download citation

Keywords

  • potential energy surface
  • HD16O
  • VTT