Atmospheric and Oceanic Optics

, Volume 28, Issue 2, pp 115–120 | Cite as

Water vapor continuum absorption in near-IR atmospheric windows

  • I. V. PtashnikEmail author
  • T. M. Petrova
  • Yu. N. Ponomarev
  • A. A. Solodov
  • A. M. Solodov
Spectroscopy of Ambient Medium


The near-infrared water vapor absorption is measured in the 2000–8000 cm−1 spectral region. Spectra were recorded using an IFS 125 HR Fourier spectrometer at a temperature of 287 K and a spectral resolution of 0.03 cm−1. The water vapor continuum absorption spectrum is retrieved using the known absorption in the 2500 cm−1 region as a reference point. It is shown that the continuum absorptions in four windows differ by no more than 20% under investigation conditions. This contradicts the MT_CKD continuum model, which predicts a much stronger variability of the continuum in these windows.


H2O continuum MT_CKD continuum atmospheric windows FTS spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Annu. Rev. Energ. Environ. 25, 441–475 (2000).CrossRefGoogle Scholar
  2. 2.
    S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res., D 97 (14), 15761–15785 (1992).CrossRefADSGoogle Scholar
  3. 3.
    C. G. Kilsby, D. P. Edwards, R. W. Saunders, and J. S. Foot, “Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons,” Quart. J. Roy. Meteorol. Soc. 118 (506), 715–748 (1992).CrossRefADSGoogle Scholar
  4. 4.
    K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33 (3–4), 535–555 (2012).CrossRefADSGoogle Scholar
  5. 5.
    Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128 (12), 124313 (2008).CrossRefADSGoogle Scholar
  6. 6.
    Ju. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111, 2298–2307 (2010).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Vigasin, “Water vapour continuous absorption in various mixtures: Possible role of weakly bound complexes,” J. Quant. Spectrosc. Radiat. Transfer 64, 25–40 (2000).CrossRefADSGoogle Scholar
  8. 8.
    I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, “Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: Evidence for water dimers,” Quart. J. Roy. Meteorol. Soc. 130 (602), 2391 (2004).CrossRefADSGoogle Scholar
  9. 9.
    J. S. Daniel, S. Solomon, H. Kjaergaard, and D. P. Schofield, “Atmospheric water vapour complexes and the continuum,” Geophys. Res. Lett. 31 (6), L06118 (2004).CrossRefADSGoogle Scholar
  10. 10.
    I. V. Ptashnik, “Evidence for the contribution of water dimers to the near-IR water vapour self-continuum,” J. Quant. Spectrosc. Radiat. Transfer 109, 831–852 (2008).CrossRefADSGoogle Scholar
  11. 11.
    I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers. 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).CrossRefADSGoogle Scholar
  12. 12.
    Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm–1 atmospheric windows,” Phil. Trans. Roy. Soc., A. 370 (1968), 2578–2589 (2012). doi  10.1098/rsta.2011.0234 CrossRefADSGoogle Scholar
  13. 13.
    E. J. Mlawer, V. H. Payne, J-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. D. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. Roy. Soc. A. 370, 2520–2556 (2012).CrossRefADSGoogle Scholar
  14. 14.
    Yu. I. Baranov, W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).CrossRefADSGoogle Scholar
  15. 15.
    J. G. Cormier, J. T. Hodges, and J. R. Drummond, “Infrared water vapour continuum absorption at atmospheric temperatures,” J. Chem. Phys. 122 (11), 114309 (2005).CrossRefADSGoogle Scholar
  16. 16.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).CrossRefADSGoogle Scholar
  17. 17.
    Yu. I. Baranov and W. J. Lafferty, “The water-vapour continuum and selective absorption in the 3 to 5 µm spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 1304–1313 (2011).CrossRefADSGoogle Scholar
  18. 18.
    Yu. I. Baranov, “The continuum absorption in H2O+N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2281–2286 (2011).CrossRefADSGoogle Scholar
  19. 19.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc., A 370 (1968), 2557–2577 (2012).CrossRefADSGoogle Scholar
  20. 20.
    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).CrossRefADSGoogle Scholar
  21. 21.
    W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-m atmospheric windows,” J. Directed Energ. 2 (2), 151–161 (2006).Google Scholar
  22. 22.
    D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 µm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).CrossRefADSGoogle Scholar
  23. 23.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and S. A. Sulakshin, “ A Fourier-spectrometer with a 30-m base-length multipass cell for the study of weak absorption spectra of atmospheric gases,” Atmos. Ocean. Opt. 24 (6), 593–595 (2011).CrossRefGoogle Scholar
  24. 24.
    L. S. Rothman, I. E. Gordon, I. E. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).CrossRefADSGoogle Scholar
  25. 25.
    A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and A. B. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Ocean. Opt. 8 (11), 847–850 (1995).Google Scholar
  26. 26.
    A. J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 11 (9), 4273–4287 (2011).CrossRefADSGoogle Scholar
  27. 27.
    S. M. Newman, P. D. Green, I. V. Ptashnik, P. D. Gardiner, M. D. Coleman, R. A. McPheat, and R. M. Smith, “Airborne and satellite remote sensing of the mid-infrared water vapour continuum,” Phil. Trans. Roy. Soc., A. 370 (1968), 2611–2636 (2012).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. V. Ptashnik
    • 1
    Email author
  • T. M. Petrova
    • 1
  • Yu. N. Ponomarev
    • 1
  • A. A. Solodov
    • 1
  • A. M. Solodov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations