Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 2, pp 139–144 | Cite as

Features of photonic nanojet formation near surfaces of spherical microparticles illuminated by a focused laser beam

  • Yu. E. GeyntsEmail author
  • A. A. Zemlyanov
  • E. K. Panina
Optical Models and Databases

Abstract

Optical field parameters in a “photonic nanojet” formed near surfaces of dielectric spherical microparticles illuminated by a focused laser beam are studied theoretically. The influence of the beam waist on “photonic nanojet” parameters (length, width, and intensity) is analyzed.

Keywords

light scattering microparticle focused laser beam photonic nanojet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today, No. 6, 66–73 (1993).CrossRefGoogle Scholar
  2. 2.
    X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (22), 526–533 (2005).CrossRefADSGoogle Scholar
  3. 3.
    Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12 (7), 1214–1220 (2004).CrossRefADSGoogle Scholar
  4. 4.
    S. Kato, S. Chonan, and T. Aoki, “High-numerical-aperture microlensed tip on an air-clad optical fiber,” Opt. Lett. 39 (4), 773–776 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20 (10), 1803–1814 (1981).CrossRefADSGoogle Scholar
  6. 6.
    B. Little, H. Haus, E. Ippen, G. Steinmeyer, and E. Thoen, “Microresonators for integrated optical devices,” Opt. Photonics News 9 (12), 32–33 (1998).CrossRefADSGoogle Scholar
  7. 7.
    Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microspheres,” Opt. Commun. 283 (23), 4775–4781 (2010).CrossRefADSGoogle Scholar
  8. 8.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Controlling the parameters of photon nanojets of composite microspheres,” Opt. Spectrosc. 109 (4), 590–595 (2010).CrossRefADSGoogle Scholar
  9. 9.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41 (6), 520–525 (2011).CrossRefADSGoogle Scholar
  10. 10.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly-excited transparent dielectric microspheres,” J. Opt. Soc. Amer., B 29 (4), 758–762 (2012).CrossRefADSGoogle Scholar
  11. 11.
    A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mieresonant dielectric microsphere,” Opt. Express 15 (25), 17334–17342 (2007).CrossRefADSGoogle Scholar
  12. 12.
    A. A. Zemlyanov and Yu. E. Geints, “Resonance excitation of light field in weakly absorbing spherical particles by a femtosecond laser pulse. Peculiarities of non-linear optical interactions,” Atmos. Ocean. Opt. 14 (5), 316–325 (2001).Google Scholar
  13. 13.
    D. Gerard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Amer., B 26 (7), 1473–1478 (2009).CrossRefADSGoogle Scholar
  14. 14.
    A. Devilez, N. Bonod, B. Stout, D. Gerard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional sub-wavelength confinement of light with dielectric micro-spheres,” Opt. Express 17 (4), 2089–2094 (2009).CrossRefADSGoogle Scholar
  15. 15.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  16. 16.
    E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33 (3), 524–532 (1994).CrossRefADSGoogle Scholar
  17. 17.
    G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Amer., A 5 (9), 1427–1443 (1988).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Amer., B 73, 303–312 (1983).CrossRefADSGoogle Scholar
  19. 19.
    G. Gouesbet, C. Letellier, and K. F. Ren, “Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35 (9), 1537–1542 (1996).CrossRefADSGoogle Scholar
  20. 20.
    G. Gouesbet, G. Grehan, and B. Maheu, “Localized interpretation to compute all the coefficients in the generalized Lorenz–Mie theory,” J. Opt. Soc. Amer., A 7 (6), 998–1007 (1990).CrossRefADSGoogle Scholar
  21. 21.
    K. F. Ren, G. Gouesbet, and G. Grehan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37 (19), 4218–4225 (1998).CrossRefADSGoogle Scholar
  22. 22.
    T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12 (6), 392–394 (1987).CrossRefADSGoogle Scholar
  23. 23.
    J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Amer., A 11 (9), 2503–2515 (1994).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Comparative analysis of spatial shapes of photonic jets from spherical dielectric microparticles,” Atmos. Ocean. Opt. 25 (5), 338–343 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964).Google Scholar
  26. 26.
    S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17 (5), 3722–3731 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. E. Geynts
    • 1
    Email author
  • A. A. Zemlyanov
    • 1
  • E. K. Panina
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations