Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 1, pp 100–106 | Cite as

Temperature and ozone anomalies as indicators of volcanic soot in the stratosphere

  • V. V. ZuevEmail author
  • N. E. Zueva
  • E. S. Saveljeva
Optical Models and Databases

Abstract

The role of volcanogenic aerosols in the formation of ozone and temperature anomalies in the tropical stratosphere recorded after the eruption of Mount Pinatubo in June, 1991, is analyzed in the work on the basis of 30-year balloon measurement data series at the Hilo station (Hawaii). Positive temperature and negative ozone deviations in vertical profiles ≥2σ from normal annual are considered as anomalies. The stratospheric anomalies observed in the second half of 1991 agree well with the presence of volcanic ash remaining in the stratosphere for about six months. However, temperature anomalies and stratospheric ozone depression, observed during next 2–3 years, cannot be explained by long-lived sulfuric acid aerosol. A mechanism is suggested for the formation of long-lived volcanic soot particles in the stratosphere due to thermal decomposition of methane in the eruption column, which actively absorb solar radiation and destroy ozone on their surfaces. The largest ozone anomaly observed in the lower stratosphere in the second half of 1992 is explained by the soot deposition rate calculated accounting for the high efficiency of ozone destruction on its surface.

Keywords

vertical temperature profiles vertical profiles of ozone eruption of Mount Pinatubo stratospheric volcanogenic aerosol soot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Trickl, H. Giehl, H. Jager, and H. Vogelmann, “35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: From Fuego to Eyjafjallajökull, and beyond,” Atmos. Chem. Phys. 13(10), 5205–5225. 2013Google Scholar
  2. 2.
    V. V. Zuev, Lidar Control of the Stratosphere (Nauka, Novosibirsk, 2004) [in Russian].Google Scholar
  3. 3.
    R. E. Holasek, S. Self, and A. W. Woods, “Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes,” J. Geophys. Res., B 101(12), 27635–27655 (1996).CrossRefADSGoogle Scholar
  4. 4.
    M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo Eruption,” Nature 373(6513), 399–404 (1995).CrossRefADSGoogle Scholar
  5. 5.
    J. Fero, S. N. Carey, and J. T. Merrill, Simulating the dispersal of tephra from the 1991 Pinatubo eruption: Implications for the formation of widespread ash layers,” J. Volcanol. Geoth. Res. 186(1–2), 120–131 (2009).CrossRefADSGoogle Scholar
  6. 6.
    M. G. Wiesner, A. Wetzel, S. G. Catane, E. L. Listanco, and H. T. Mirabueno, “Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea,” Bull. Volcanol. 66(3), 226–242 (2004).CrossRefADSGoogle Scholar
  7. 7.
    E. M. Patterson, C. O. Pollard, and I. Galindo, “Optical properties of the ash from El Chichon volcano,” Geophys. Res. Lett. 10(4), 317–320 (1983).CrossRefADSGoogle Scholar
  8. 8.
    A. E. Michel, C. R. Usher, and V. H. Grassian, “Reactive uptake of ozone on mineral oxides and mineral dusts,” Atmos. Environ. 37(23), 3201–3211 (2003).CrossRefADSGoogle Scholar
  9. 9.
    P. B. Russell, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamill, L.W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, and R. W. Bergstrom, “Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses,” Geophys. Res., D 101(13), 18745–18763 (1996).CrossRefADSGoogle Scholar
  10. 10.
    A. B. Harker and W. W. Ho, “Heterogeneous ozone decomposition on sulfuric acid surfaces at stratospheric temperatures,” Atmos. Environ. 13(7), 1005–1010 (1979).CrossRefADSGoogle Scholar
  11. 11.
    K. Olszyna, R. D. Cadle, and R. G. DePena, “Stratospheric heterogeneous decomposition of ozone,” J. Geophys. Res. 84(4), 1771–1775.Google Scholar
  12. 12.
    L. K. Wang, N. K. Shammas, and Y.-T. Hung, Biosolids Treatment Processes, Hardbook of Environmental Engineering, Vol. 6: Totowa (Humana Press, New Jersey, 2007).CrossRefGoogle Scholar
  13. 13.
    B. Kravitz, A. Robock, D. T. Shindell, and M. A. Miller, “Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection,” J. Geophys. Res., D 117(9), 1–22 (2012).Google Scholar
  14. 14.
    S. Bekki, “On the possible role of aircraft-generated soot in the middle latitude ozone depletion,” J. Geophys. Res., D 102(9), 10751–10758 (1997).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    T. A. Mather, D. M. Pyle, and C. Oppenheimer, “Tropospheric volcanic aerosol,” in Volcanism and the Earth’s Atmosphere (American Geophysical Union, 2003), Geophysical Monograph Series, Vol. 139, pp. 189–212.CrossRefGoogle Scholar
  16. 16.
    D. L. Hartmann and P. J. Mouginis-Mark, Volcanoes and Climate Effects of Aerosols, EOS Science Plan: Executive Summary, Ed. by R. Greenstone and M.D. King (NASA, Washington, DC, 1999).Google Scholar
  17. 17.
    R. S. Martin, T. A. Mather, D. M. Pyle, M. Power, A. G. Allen, A. Aiuppa, C. J. Horwell, and E. P. W. Ward, “Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes,” J. Geophys. Res., D 113(17), 1–17 (2008).Google Scholar
  18. 18.
    R. B. Symonds, W. I. Rose, G. Bluth, and T. M. Gerlach, “Volcanic gas studies: Methods, results, and applications,” Rev. Mineral. Geochem. 30(1), 1–66 (1994).Google Scholar
  19. 19.
    V. P. Zuev and V. V. Mikhailov, Soot Production (Khimiya, Moscow, 1965) [in Russian].Google Scholar
  20. 20.
    V. I. Ivanovskii, Technical Carbon. Processes and Instruments (OAO “Tekhuglerod”, Omsk, 2004) [in Russian].Google Scholar
  21. 21.
    V. S. Orekhov, M. Yu. Subocheva, A. A. Degtyarev, and D. N. Trufanov, Chemical Technology of Organic Matters (TGTU, Tambov, 2010), Part 4 [in Russian].Google Scholar
  22. 22.
  23. 23.
    G. Etiope, T. Fridriksson, F. Italiano, W. Winiwarter, and J. Theloke, “Natural emissions of methane from geothermal and volcanic sources in Europe,” J. Volcanol. Geoth. Res. 165(1–2), 76–86 (2007).CrossRefADSGoogle Scholar
  24. 24.
    V. A. Basiuk and R. Navarro-Gonzalez, “Possible role of volcanic ash-gas clouds in the Earth’s prebiotic chemistry,” Origins Life Evol. 26(2), 173–194.Google Scholar
  25. 25.
    D. F. Blake and K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere,” J. Geophys. Res., D 100(4), 7195–7202 (1995).CrossRefADSGoogle Scholar
  26. 26.
    A. Petzold, A. Dopelheuer, C. A. Brock, and F. Schro- der, “In situ observations and model calculations of black carbon emission by aircraft at cruise altitude,” J. Geophys. Res., D 104(18), 22171–22178 (1999).CrossRefADSGoogle Scholar
  27. 27.
    W. J. Randel, F. Wu, J. M. Russell, J. W. Waters, and L. Froidevaux, “Ozone and temperature changes in the stratosphere following the eruption of Pinatubo,” J. Geophys. Res., D 100(8), 16753–16764 (1995).CrossRefADSGoogle Scholar
  28. 28.
    G. P. Gobbi, F. Congeduti, and A. Adriani, “Early stratospheric effects of the Pinatubo eruption,” Geophys. Res. Lett. 19(10), 997–1000 (1992).CrossRefADSGoogle Scholar
  29. 29.
    J. Hansen, A. Lacis, R. Ruedy, and M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19(2), 215–218 (1992).CrossRefADSGoogle Scholar
  30. 30.
    M. A. F. Allaart and H. J. Eskes, “Multi sensor reanalysis of total ozone,” Atmos. Chem. Phys. 10(22), 11277–11294 (2010).CrossRefADSGoogle Scholar
  31. 31.
  32. 32.
  33. 33.
    V. I. Gryazin, Candidate’s Dissertation in Mathematics and Physics (Ural State University, Yekaterinburg, 2011).Google Scholar
  34. 34.
    K. M. Malina, Handbook for Sulfuric Acid Manufacturer (Khimiya, Moscow, 1971) [in Russian].Google Scholar
  35. 35.
    P. Chazette, C. David, J. Lefrere, S. Gobin, J. Pelon, and G. Megie, “Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric aerosols, following the eruptions of El Chichon and Mount Pinatubo,” J. Geophys. Res., D 100(11), 23195–23207 (1995).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Monitoring of Climate and Ecological Systems, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations