Study of variations in parameters of atmospheric aerosol due to large-scale forest fires in Central Yakutia (2002)

Abstract

Variations in the aerosol optical depth and aerosol index caused by large-scale forest fires in Central Yakutia in 2002 are studied on the basis of satellite data (NOAA, Terra, Earth Probe). The total emissions of CO2, CO, CH4, etc. are calculated using a modeling approach and remote sounding data on burnt areas. The total emissions from forest fires in Central Yakutia are compared with global fire and volcanic emissions. Events of long-range transport of aerosol particles during maximal activity of forest fires are examined.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. P. Shcherbakov, O. F. Zabelin, B. A. Karpel’, V. M. Mikhaleva, R. V. Chugunova, A. P. Yakovlev, A. I. Averenskii, and V. G. Korokhodkina, Forest Fires in Yakutia and Their Effect on the Forest Nature (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  2. 2.

    L. P. Lytkina and S. I. Mironova, “Postfire succession in a forest of the cryolithozone: The example of Central Yakutia,” Rus. J. Ecol. 40(3), 154–159 (2009).

    Article  Google Scholar 

  3. 3.

    A. Z. Shvidenko, D. G. Shchepashchenko, E. A. Vaganov, A. I. Sukhinin, Sh. Sh. Maksyutov, I. Kallum, and I. P. Lakida, “Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget,” Dokl. Earth Sci. 441(2), 1678–1682 (2011).

    Article  Google Scholar 

  4. 4.

    P. J. Crutzen and M. O. Andreae, “Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles,” Science 250(4988), 1669–1678 (1990).

    Article  ADS  Google Scholar 

  5. 5.

    W. E. Cofer, E. L. Winstead, B. J. Stocks, L. W. Overbay, J. G. Goldammer, D. R. Cahoon, and J. S. Levine, “Emissions from boreal forest fires: Are the atmospheric impacts underestimated?, in Biomass Burning and Global Change (MIT Press, Cambridge, 1996).

    Google Scholar 

  6. 6.

    A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “The influence of natural and anthropogenic aerosols on global and regional climate,” Ros. Khim. Zh. 52(5), 112–119 (2008).

    Google Scholar 

  7. 7.

    M. Fromm and T. Servranckx, “Transport of forest fire smoke above the tropopause by supercell convection,” Geophys. Rev. Lett. 30(10), 1542 (2003).

    Article  ADS  Google Scholar 

  8. 8.

    I. T. Bertschi and D. A. Jaffe, “Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: Observations of smoke plumes from Asian boreal fires,” J. Geophys. Res., D 110(5), D05303 (2005).

    ADS  Google Scholar 

  9. 9.

    A. Arola, A. Lindfors, A. Natunen, and K. E. J. Lehtinen, “A case study on biomass burning aerosols: effects on aerosol optical properties and surface radiation levels,” Atmos. Chem. Phys. 7(16), 4257–4266 (2007).

    Article  ADS  Google Scholar 

  10. 10.

    K. Ya. Kondrat’ev, “Aerosol and climate studies: current state and prospects 1. Aerosol formation, its properties, and their transformations,” Atmos. Ocean. Opt. 19(1), 1–16 (2006).

    Google Scholar 

  11. 11.

    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nedelec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the south of West Siberia,” Opt. Atmos. Okeana 26(9), 773–782 (2013).

    Google Scholar 

  12. 12.

    V. S. Solovyev and A. A. Budishchev, “Disturbances of aerosol optical thickness of the atmosphere caused by forest fires in Yakutia,” Atmos. Ocean. Opt. 23(6), 538–541 (2010).

    Article  Google Scholar 

  13. 13.

    O. A. Tomshin, A. V. Protopopov, and V. S. Solovyev, “Study of variations in atmospheric aerosol and carbon monoxide in regions of forest fires,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 9(1), 145–150 (2012).

    Google Scholar 

  14. 14.

    V. S. Solovyev and V. I. Kozlov, “The investigation of space-time dynamics of forest fires and cloudiness in the North-Asian region based on the NOAA satellite data,” Atmos. Ocean. Opt. 18(1–2), 135–138 (2005).

    Google Scholar 

  15. 15.

    V. S. Solovyev, V. I. Kozlov, and I. F. Smirnov, “Spatiotemporal dynamics of forest fires in Yakutia,” Nauka Obrazovanie, No. 1, 67–73 (2005).

    Google Scholar 

  16. 16.

    V. S. Solovyev, “Weekly variations in forest fires in Yakutia,” Nauka Obrazovanie, No. 1, 66–70 (2009).

    Google Scholar 

  17. 17.

    V. S. Solovyev, V. I. Kozlov, and V. A. Mullayarov, Remote Monitoring of Forest Fires and Thunderstorms in Yakutia (Yakutia Scientific Center, Siberian Branch, Russian Academy of Sciences, Yakutsk, 2009) [in Russian].

    Google Scholar 

  18. 18.

    V. S. Solovyev, V. I. Kozlov, R. R. Karimov, and M. S. Vasil’ev, “Complex monitoring of thunderstorm activity and forest fires from ground-based and satellite observation data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 7(4), 218–224 (2010).

    Google Scholar 

  19. 19.

    J. G. Acker and G. Leptoukh, “Online analysis enhances use of NASA Earth science data,” EOS, Transactions AGU 88(2), 14–17 (2007).

    Article  ADS  Google Scholar 

  20. 20.

    W. Seiler and P. J. Crutzen, “Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning,” Clim. Change 2(3), 207–247 (1980).

    Article  Google Scholar 

  21. 21.

    C. Wiedinmyer, B. Quayle, C. Geron, A. Belote, D. McKenzie, X. Zhang, S. O’Neill, and K. K. Wynne, “Estimating emissions from fires in north america for air quality modeling,” Atmos. Environ. 40(19), 3419–3432 (2006).

    Article  ADS  Google Scholar 

  22. 22.

    R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT-4 modeling system of trajectories, dispersion, and deposition,” Austral. Meteorol. Mag. 47(4), 295–308 (1998).

    Google Scholar 

  23. 23.

    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” Bull. Amer. Meteorol. Soc., No. 77, 437–470 (1996).

    Google Scholar 

  24. 24.

    G. R. Van der Werf, J. T. Randerson, L. Giglio, and G. J. Collatz, “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10(23), 11707–11735 (2010).

    Article  ADS  Google Scholar 

  25. 25.

    T. Gerlach, “Volcanic versus anthropogenic carbon dioxide,” EOS, Transactions AGU 92(24), 201–202 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. A. Tomshin.

Additional information

Original Russian Text © O.A. Tomshin, V.S. Solovyev, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomshin, O.A., Solovyev, V.S. Study of variations in parameters of atmospheric aerosol due to large-scale forest fires in Central Yakutia (2002). Atmos Ocean Opt 28, 95–99 (2015). https://doi.org/10.1134/S1024856015010145

Download citation

Keywords

  • forest fires
  • aerosols
  • emissions
  • remote sensing