Skip to main content

The amplitude of the CO2 seasonal cycle in the atmosphere of the Ural region retrieved from ground-based and satellite near-IR measurements


A series of ground-based high-resolution Fourier-transform measurements of atmospheric transmittance in the near infrared region (4000–10000 cm−1) recorded at the Ural Atmospheric Station in 2012–2013 was processed in order to retrieve relative concentrations of CO2 and CH4 in the atmospheric column. Retrieved values of methane concentration do not show a noticeable seasonal cycle, while retrieved CO2 concentrations show clear seasonal variations with high amplitude, which are also observed in GOSAT measurements over the Ural region. The estimated amplitude of CO2 seasonal variations is 14–15 ppm. The comparison between CO2 ground-based and GOSAT measurements shows a good agreement, while satellite values are overestimated by approximately 3 ppm. There is no noticeable correlation between CH4 values, which could be explained by the presence of local methane sources in the area of GOSAT observations.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Jouzel, “A brief history of ice core science over the last 50 years,” Clim. Past. 9(6), 2525–2547 (2013).

    Article  Google Scholar 

  2. 2.

    C. Meure, D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins, “Law dome CO2, CH4, and N2O ice core records extended to 2000 years BP,” Geophys. Rev. Lett. 33,L14810, 4 (2006).

    Article  ADS  Google Scholar 

  3. 3.

    S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, “Climate change 2007: The physical science basis,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (University Press, Cambridge, 2007).

    Google Scholar 

  4. 4.

    R. J. Francey, C. M. Trudinger, M. van der Schoot, R.M. Law, P. B. Krummel, R. L. Langenfelds, L. P. Steele, C. E. Allison, A. R. Stavert, R. J. Andres, and C. Rodenbeck, “Atmospheric verification of anthropogenic CO2 emission trends,” Nat. Clim. Change 3(5), 520–524 (2012).

    Article  ADS  Google Scholar 

  5. 5.

    J. G. J. Olivier, G. Janssens-Maenhout, and J. A. H. W. Peters, Trends in Global CO 2 Emissions, 2012 Report (PBL Netherlands Environmental Assessment Agency, The Hague, 2012).

    Google Scholar 

  6. 6.

    O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).

    Article  ADS  Google Scholar 

  7. 7.

    O. Schneising, J. Heymann, M. Buchwitz, M. Reuter, H. Bovensmann, and J. P. Burrows, “Anthropogenic carbon dioxide source areas observed from space: Assessment of regional enhancements and trends,” Atmos. Chem. Phys. 13(5), 2445–2454 (2013).

    Article  ADS  Google Scholar 

  8. 8.

    O. Schneising, M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J. P. Burrows, “Terrestrial carbon sink observed from space: Variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability,” Atmos. Chem. Phys. 14(1), 133–141 (2014).

    Article  ADS  Google Scholar 

  9. 9.

    E. J. Dlugokencky, L. Bruhwiler, J. W. C. White, L.K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, “Observational constraints on recent increases in the atmospheric CH4 burden,” Geophys. Rev. Lett. 36(18), 5 (2009).

    Article  Google Scholar 

  10. 10.

    M. Rigby, R. G. Prinn, P. J. Fraser, P. G. Simmonds, R. L. Langenfelds, J. Huang, D. M. Cunnold, L. P. Steele, P. B. Krummel, R. F. Weiss, S. O’Doherty, P. K. Salameh, H. J. Wang, C. M. Harth, J. Muhle, and L. W. Porter, “Renewed growth of atmospheric methane,” Geophys. Rev. Lett. 35(22), 6 (2008).

    Article  Google Scholar 

  11. 11.

  12. 12.

    S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quere, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, SudoK. Kengo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, and G. Zeng, “Three decades of global methane sources and sink,” Nat. Geosci. 6(10), 813–823 (2013).

    Article  ADS  Google Scholar 

  13. 13.

    P. Bergamaschi, H. Houweling, A. Segers, M. Krol, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, S. C. Wofsy, E. A. Kort, C. Sweeney, T. Schuck, C. Brenninkmeijer, H. Chen, V. Beck, and C. Gerbig, “Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements,” J. Geophys. Res. 118(13), 7350–7369 (2013).

    Google Scholar 

  14. 14.

    P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Breon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, G. van der Werf, D. Wickland, M. Williams, and C. Zehner, “Current systematic carbon cycle observations and needs for implementing a policy-relevant carbon observing system,” Biogeosciences Discuss 10(7), 11447–11581 (2013).

    Article  ADS  Google Scholar 

  15. 15.

    S. Houweling, M. Krol, P. Bergamaschi, C. Frankenberg, E. J. Dlugokencky, I. Morino, J. Notholt, V. Sherlock, D. Wunch, V. Beck, C. Gerbig, H. Chen, E. A. Kort, T. Rockmann, and I. Aben, “A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements,” Atmos. Chem. Phys. 14(8), 3991–4012 (2014).

    Article  ADS  Google Scholar 

  16. 16.

    J. G. Canadell, P. Ciais, S. Dhakal, H. Dolman, P. Friedlingstein, K. R. Gurney, A. Held, R. B. Jackson, C. Le Quere, E. L. Malone, D. S. Ojima, A. Patwardhan, G. P. Peters, and M. R. Raupach, “Interactions of the carbon cycle, human activity, and the climate system: A research portfolio,” Curr. Opin. Environ. Sustainabil. 2(4), 301–311 (2010).

    Article  Google Scholar 

  17. 17.

    B. B. Stephens, K. R. Gurney, P. P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. L. Langenfelds, L. P. Steele, R. J. Francey, and A. S. Denning, “Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2,” Science 316(5832), 1732–1735 (2007).

    Article  ADS  Google Scholar 

  18. 18.

    A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring,” Appl. Opt. 48(35), 6716–6733 (2009).

    Article  ADS  Google Scholar 

  19. 19.

    Y. Yoshida, Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, “Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite,” Atmos. Measur. Technol. 4(4), 717–734 (2011).

    Article  ADS  Google Scholar 

  20. 20.

    M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, Y. Yoshida, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P. P. Tans, A. E. Andrews, S. C. Biraud, T. Tanaka, S. Kawakami, and P. K. Patra, “Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data,” Atmos. Chem. Phys. 13(19), 9771–9788 (2013).

    Article  ADS  Google Scholar 

  21. 21.

    T. Tanaka, Y. Miyamoto, I. Morino, T. Machida, T. Nagahama, Y. Sawa, H. Matsueda, D. Wunch, S. Kawakami, and O. Uchino, “Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution fourier transform spectrometers and a comparison to GOSAT data measured over Tsukuba and Moshiri,” Atmos. Measur. Technol. 8(5), 2005–2012 (2012).

    Google Scholar 

  22. 22.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inoue, O. A. Krasnov, T. Machida, Sh. Sh. Maksutov, F. Nedelek, M. Ramonet, F. Sias, G. N. Tolmachev, and A. V. Fofonov, “Organization of monitoring of the greenhouse gases and of the components oxidizing the atmosphere over Siberia and some results obtained. 1. Gas composition,” Atmos. Ocean. Opt. 19(11), 851–857 (2006).

    Google Scholar 

  23. 23.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inoue, Sh. Sh. Maksutov, T. Machida, and A. V. Fofonov, “Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data,” Atmos. Ocean. Opt. 22(3), 316–324 (2009).

    Article  Google Scholar 

  24. 24.

    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nedelec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the South of West Siberia,” Opt. Atmos. Okeana 26(9), 773–782 (2013).

    Google Scholar 

  25. 25.

    A. Klonecki, M. Pommier, C. Clerbaux, G. Ancellet, J.-P. Cammas, P.-F. Coheur, A. Cozic, G. S. Diskin, J. Hadji-Lazaro, D. A. Hauglustaine, D. Hurtmans, B. Khattatov, J.-F. Lamarque, K. S. Law, P. Nedelec, J.-D. Paris, J. R. Podolske, P. Prunet, H. Schlager, S. Szopa, and S. Turquety, “Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements,” Atmos. Chem. Phys. 12(10), 4493–4512 (2012).

    Article  ADS  Google Scholar 

  26. 26.

    A. B. Uspenskii, A. V. Kukharskii, S. V. Romanov, and A. N. Rublev, “Monitoring of carbon dioxide concentration and total methane in the troposphere over Siberia from AIRS and IASI satellite IR-sounders’ data,” Issled. Zemli Kosmosa, No. 1, 14–21 (2011).

    Google Scholar 

  27. 27.

    A. V. Kukharskii and A. B. Uspenskii, “Determination of tropospheric mean carbon dioxide concentration from satellite high spectral resolution IR-sounder data,” Rus, Meteorol. Hydrol. 34(4), 202–211 (2009).

    Article  Google Scholar 

  28. 28.

    A. V. Kukharskii and A. B. Uspenskii, “Monitoring of tropospheric carbon diosxide concentration over Siberian boreal ecosystems,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 7(4), 204–211 (2010).

    Google Scholar 

  29. 29.

    D. Wunch, G. C. Toon, P. O. Wennberg, S. C. Wofsy, B. B. Stephens, M. L. Fischer, O. Uchino, J. B. Abshire, P. Bernath, S. C. Biraud, J.-F. L. Blavier, C. Boone, K. P. Bowman, E. V. Browell, T. Campos, B. J. Connor, B. C. Daube, N. M. Deutscher, M. Diao, J. W. Elkins, C. Gerbig, E. Gottlieb, D. W. T. Griffith, D. F. Hurst, R. Jimenez, G. Keppel-Aleks, E. A. Kort, R. Macatangay, T. Machida, H. Matsueda, F. Moore, I. Morino, S. Park, J. Robinson, C. M. Roehl, Y. Sawa, V. Sherlock, C. Sweeney, T. Tanaka, M. A. Zondlo, “Calibration of the total carbon column observing network using aircraft profile data,” Atmos. Measur. Technol. 3(5), 1351–1362 (2010).

    Article  ADS  Google Scholar 

  30. 30.

    J. W. Hannigan, M. T. Coffey, and A. Goldman, “Semiautonomous FTS observation system for remote sensing of stratospheric and tropospheric gases,” J. Atmos. Ocean Technol. 26, 1814–1828 (2009).

    Article  ADS  Google Scholar 

  31. 31.

    I. Morino, O. Uchino, M. Inoue, Y. Yoshida, T. Yokota, P. O. Wennberg, G. C. Toon, D. Wunch, C. M. Roehl, J. Notholt, T. Warneke, J. Messerschmidt, D. W. T. Griffith, N. M. Deutscher, V. Sherlock, B. Connor, J. Robinson, R. Sussmann, and M. Rettinger, “Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra,” Atmos. Measur. Technol. 4(6), 1061–1076 (2011).

    Article  ADS  Google Scholar 

  32. 32.

    J. Notholt, T. Blumenstock, D. Brunner, B. Buchmann, B. Dils, M. De Maziere, Ch. Popp, and R. Sussmann,

  33. 33.

    A. J. Cogan, H. Boesch, R. J. Parker, L. Feng, P. I. Palmer, J.-F. L. Blavier, N. M. Deutscher, R. Macatangay, J. Notholt, C. Roehl, T. Warneke, and D. Wunch, “Atmospheric carbon dioxide retrieved from the Greenhouse Gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations,” J. Geophys. Res. Atmos. 117, D21301, 17 (2012).

    Article  Google Scholar 

  34. 34.

    K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.-M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov, “Developing a Western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing),” Atmos. Chem. Phys. 14(12), 5943–5957 (2014).

    Article  ADS  Google Scholar 

  35. 35.

    G. Keppel-Aleks, G. C. Toon, P. O. Wennberg, and N. M. Deutscher, “Reducing the impact of source brightness fluctuations on spectra obtained by Fouriertransform spectrometry,” Appl. Opt. 46(21), 4774–4779 (2007).

    Article  ADS  Google Scholar 

  36. 36.

    C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific Publishing, Singapur, 2000).

    Book  Google Scholar 

  37. 37.

    D. Wunch, G. C. Toon, J. -F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Philos. Tr. Soc., A 369(1943), 2087–2112 (2011).

    Article  ADS  Google Scholar 

  38. 38.

    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J. P. Champion, “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572 (2009).

    Article  ADS  Google Scholar 

  39. 39.

    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, and R. Reynolds, “The NCEP/NCAR 40-year reanalysis project,” Bull. Amer. Meteorol. Soc. 77(3), 437–471 (1996).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. V. Rokotyan.

Additional information

Original Russian Text © N.V. Rokotyan, R. Imasu, V.I. Zakharov, K.G. Gribanov, M.Yu. Khamatnurova, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rokotyan, N.V., Imasu, R., Zakharov, V.I. et al. The amplitude of the CO2 seasonal cycle in the atmosphere of the Ural region retrieved from ground-based and satellite near-IR measurements. Atmos Ocean Opt 28, 49–55 (2015).

Download citation


  • atmospheric remote sensing
  • FTIR spectrometry
  • carbon gases
  • greenhouse gases
  • CO2
  • CH4
  • validation
  • Ural Atmospheric Station