Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 1, pp 74–81 | Cite as

Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates

  • A. V. KonoshonkinEmail author
  • N. V. Kustova
  • A. G. Borovoi
Optical Models and Databases

Abstract

Quasihorizontally oriented ice crystals of cirrus clouds became an object of active study in recent times. Experimental observations are made with the use of multiwavelength and polarization lidars; their signals are interpreted on the basis of solutions obtained in the approximation of physical or geometrical optics. In this work, we compare these approximations for solution of the problem of light backscattering by quasihorizontally oriented hexagonal ice plates. Special attention is paid to the limits to applicability of geometrical optics approach to solution of such problems.

Keywords

geometrical optics physical optics light scattering ice crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Liou, “Influence of cirrus clouds on the weather and climate process: A global perspective,” Mon. Weather. Rev. 114(6), 1167–1199 (1986).CrossRefADSGoogle Scholar
  2. 2.
    M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).Google Scholar
  3. 3.
    J. Quant. Spectrosc. Radiat. Transfer (special issue) 131, 1–234 (2013).Google Scholar
  4. 4.
    M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: A current perspective,” J. Quant. Spectrosc. Radiat. Transfer. 111(11), 1700–1703 (2010).CrossRefADSGoogle Scholar
  5. 5.
    M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1–3), 546–557 (2007).CrossRefADSGoogle Scholar
  6. 6.
    M. A. Yurkin and A. G. Hoekstra, “The discretedipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112(13), 2234–2247 (2011).CrossRefADSGoogle Scholar
  7. 7.
    A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Amer., A 20(11), 2071–2080 (2003).CrossRefADSGoogle Scholar
  8. 8.
    P. Yang and K. N. Liou, “Light scattering and absorption by nonspherical ice crystals,” in Light Scattering Reviews, Ed. by A.A. Kokhanovsky (Springer-Praxis, Chichester, 2006), vol. 1.Google Scholar
  9. 9.
    A. Macke, M. I. Mishchenko, and B. Cairns, “The influence of inclusions on light scattering by large ice particles,” J. Geophys. Res., D 101(18), 23311–23316 (1996).CrossRefADSGoogle Scholar
  10. 10.
    N. V. Kustova, Candidate’s Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Tomsk, 2009).Google Scholar
  11. 11.
    A. V. Burnashov and A. V. Konoshonkin, “Matrix of light scattering on a truncated plate-like droxtal preferably oriented in a horizontal plane,” Atmos. Ocean. Opt. 26(3), 194–200 (2013).CrossRefGoogle Scholar
  12. 12.
    A. G. Borovoi, “Light scattering by large particles: Physical optics and the shadow-forming field,” in Light Scattering Reviews, Ed. by A.A. Kokhanovsky (Springer-Praxis, 2013), vol. 8, ch. 3, pp. 115–138.Google Scholar
  13. 13.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Back-scattering reciprocity for large particles,” Opt. Lett. 38(9), 1485–1487 (2013).CrossRefADSGoogle Scholar
  14. 14.
    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20(27), 28222–28233 (2012).CrossRefADSGoogle Scholar
  15. 15.
    L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112(9), 1492–1508 (2011).CrossRefADSGoogle Scholar
  16. 16.
    P. Yang and K. N. Liou, “Geometric-optics-integralequation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).CrossRefADSGoogle Scholar
  17. 17.
    P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: Solutions by a ray-by-ray integration algorithm,” J. Opt. Soc. Amer., A 14(9), 2278–2289 (1997).CrossRefADSGoogle Scholar
  18. 18.
    I. V. Samokhvalov, B. V. Kaul’, S. V. Nasonov, I. V. Zhivotenyuk, and I. D. Bryukhanov, “Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles,” Opt. Atmos. Okeana 25(5), 403–411 (2012).Google Scholar
  19. 19.
    Yu. S. Balin, B. V. Kaul, G. P. Kokhanenko, and I. E. Penner, “Observations of specular reflective particles and layers in crystal clouds,” Opt. Express 19(7), 6209–6214 (2011).CrossRefGoogle Scholar
  20. 20.
    C. V. Nasonov and I. V. Samokhvalov, “Study of upperlevel crystal clouds with preferred orientated particles using the polarization of Tomsk State University,” Izv. Vuzov, Fiz., No. 9/2, 134–135 (2012).Google Scholar
  21. 21.
    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27(6), 919–926 (1970).CrossRefADSGoogle Scholar
  22. 22.
    A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29(7), 1348–1357 (1972).CrossRefADSGoogle Scholar
  23. 23.
    A. J. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocities,” J. Atmos. Sci. 57(7), 916–938 (2000).CrossRefADSGoogle Scholar
  24. 24.
    A. J. Heymsfield, S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, “A general approach for deriving the properties of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 59(1), 3–29 (2002).CrossRefADSGoogle Scholar
  25. 25.
    P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hostetler, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, “Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1139–1157 (2000).Google Scholar
  26. 26.
    K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals,” J. Geophys. Res. 111, D22213 (2006).CrossRefADSGoogle Scholar
  27. 27.
    G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1741–1753 (1990).CrossRefADSGoogle Scholar
  28. 28.
    D. L. Mitchell, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics,” J. Atmos. Sci. 51, 797–816 (1994).CrossRefADSGoogle Scholar
  29. 29.
    G. W. Petty and W. Huang, “The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions,” J. Atmos. Sci. 68, 1460–1473 (2011).CrossRefADSGoogle Scholar
  30. 30.
    K. Sato and H. Okamoto, “Refinement of global ice microphysics using spaceborne active sensors,” J. Geophys. Res. 116, D20202 (2011).CrossRefADSGoogle Scholar
  31. 31.
    A. J. Heymsfield, A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, and W. Hall, “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns,” J. Atmos. Sci. 59(24), 3457–3491 (2002).CrossRefADSGoogle Scholar
  32. 32.
    I. V. Samokhvalov, S. V. Nasonov, I. D. Bryukhanov, A. G. Borovoi, B. V. Kaul’, N. V. Kustova, and A. V. Konoshonkin, “Analysis of the backscattering phase matrices of cirrus with anomalous reflection,” Izv. Vyssh. Uchebn. Zaved., No. 8/3, 281–283 (2013).Google Scholar
  33. 33.
    Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24(4), 293–299 (2011).Google Scholar
  34. 34.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Back-scattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38(15), 2881–2884 (2013).CrossRefADSGoogle Scholar
  35. 35.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26(5), 385–387 (2013).Google Scholar
  36. 36.
    A. V. Konoshonkin and A. G. Borovoi, “Specular scattering of light on cloud ice crystals and wavy water surface,” Atmos. Ocean. Opt. 26(5), 438–443 (2013).CrossRefGoogle Scholar
  37. 37.
    A. V. Konoshonkin, Candidate’s Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Tomsk, 2013).Google Scholar
  38. 38.
    A. Borovoi, A. Konoshonkin, and L. Kolokolova, “Glints from particulate media and wavy surfaces,” J. Quant. Spectrosc. Radiat. Transfer 113(18), 2542–2551 (2012).CrossRefADSGoogle Scholar
  39. 39.
    V. P. Galileiskii, A. G. Borovoi, G. G. Matvienko, and A. M. Morozov, “Specularly reflected component at light scattering by ice crystals with predominant orientation,” Atmos. Ocean. Opt. 21(9), 668–673 (2008).Google Scholar
  40. 40.
  41. 41.
    V. P. Galileiskii, B. V. Kaul’, G. G. Matvienko, and A. M. Morozov, “Angular structure of the light intensity near the angles of mirror reflection from the faces of ice crystalline particles,” Atmos. Ocean. Opt. 22(5), 506–512 (2009).CrossRefGoogle Scholar
  42. 42.
    P. Yang, B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, “Singlescattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1159–1169 (2003).CrossRefGoogle Scholar
  43. 43.
    A. V. Konoshonkin and A. G. Borovoi, “Light scayyrting by atmospheric ice crystals and ruffled water surface,” Izv. Vyssh. Uchebn. Zaved., No. 9/2, 128–130 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Konoshonkin
    • 1
    • 2
    Email author
  • N. V. Kustova
    • 1
  • A. G. Borovoi
    • 1
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations