Atmospheric and Oceanic Optics

, Volume 28, Issue 1, pp 34–42 | Cite as

Experimental estimates of turbulence anisotropy tensor components in the surface air layer

  • V. A. GladkikhEmail author
  • I. V. Nevzorova
  • S. L. Odintsov
  • V. A. Fedorov
Optics of Stochastically-Heterogeneous Media


Based on experimental data obtained in the surface air layer with different structures of the underlying surface, components of the turbulence anisotropy tensor are calculated and their average values and root-mean-square deviations are determined for different conditions of measurements. The influence of experimental data processing modes on the statistic of anisotropy tensor components is considered. A high degree of stability of average values of tensor components in different conditions is reported.


atmosphere turbulence surface layer anisotropy tensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Kurbatskii, Introduction into Simulation of Pulse and Scalar Turbulent Transfer (GEO, Novosibirsk, 2007) [in Russian].Google Scholar
  2. 2.
    A. I. Borodulin and B. M. Desyatkov, Simulation of Impurity Propagation in Boundary Air Layer (Novosib. Gos. Univ., Novosibirsk, 2007) [in Russian].Google Scholar
  3. 3.
    V. N. Lykosov, A. V. Glazunov, D. V. Kulyamin, E. V. Mortikov, and V. M. Stepanenko, Supercomputer Simulation in Physics of Climate Systems (Mosk. Gos. Univ., Moscow, 2012) [in Russian].Google Scholar
  4. 4.
    K. S. Choi and J. L. Lumley, “The return to isotropy of homogeneous turbulence,” J. Fluid Mech. 436, 59–84 (2001).CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Xie Zheng-Tong, Coceal Omduth, and P. Ian Castro, “Large-eddy simulation of flows over random urban-like obstacles,” Boundary-Layer Meteorol. 129(1), 1–23 (2008).CrossRefADSGoogle Scholar
  6. 6.
    V. A. Banakh, V. V. Belov, A. A. Zemlyanov, G. M. Krekov, V. P. Lukin, G. G. Matvienko, V.V. Nosov, A. Ya. Sukhanov, and A. V. Falits, Propagation of Optical Waves in Inhomogeneous, Random, and Nonlinear Media (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].Google Scholar
  7. 7.
    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7, 21–25 (2009).Google Scholar
  8. 8.
    V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part II. Statistics of structure functions’ parameters,” Atmos. Ocean. Opt. 27(2), 154–163 (2014).CrossRefGoogle Scholar
  9. 9.
    Dzh. Lamli and G. Panovskii, Structure of Atmospheric Turbulence (Mir, Moscow, 1966) [in Russian].Google Scholar
  10. 10.
    A. A. Mamysheva and S. L. Odintsov, “Experimental estimate of turbulent kinetic energy in the near-surface layer over urban area,” Opt. Atmos. Okeana 24(9), 817–827 (2011).Google Scholar
  11. 11.
    A. A. Mamysheva and S. L. Odintsov, “Normalized variance of wind velocity components in the atmospheric surface layer over an urban territory,” Opt. Atmos. Okeana 25(7), 621–628 (2012).Google Scholar
  12. 12.
    N. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  13. 13.
    S. Zilitinkevich, T. Elperin, N. Kliorin, and I. Rogachevskii, “Theory of turbulence closure for stably stratified flows on the basis of balance equations of kinetic and potential energies and turbulent heat flows and momentum. Part I: Stable, homogeneous conditions,” in Boundary Air Layers. Nature, Theory, and Applications to Simulation and Environmental Protection (GEOS, Moscow, 2012) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Gladkikh
    • 1
    Email author
  • I. V. Nevzorova
    • 1
  • S. L. Odintsov
    • 1
  • V. A. Fedorov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations