Abstract
Analytical formulas for the estimation of the sensitivity of downward long-wave radiative fluxes to variations in the total water vapor content in the atmospheric vertical column in the absorption bands and atmospheric transparency windows are derived. The regression dependence of the CO2 radiative forcing on the total water vapor content is calculated for the Lower Volga region. The role of the H2O continuum absorption is studied, and the CO2 radiative forcing is shown to strongly depend on the continuum magnitude. The atmospheric conditions are determined, under which the contribution of the H2O continuum due to the interaction of water vapor with air molecules to the downward radiative fluxes is maximal.
Similar content being viewed by others
References
P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “IPCC, 2007: Changes in atmospheric constituents and in radiative forcing” in Climate Change; 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge Univ., Cambridge, UK; USA, 2007).
I. M. Held and B. J. Soden, “Robust responses of the hydrological cycle to global warming,” J. Climate 19(21), 5686–5699 (2006).
G. L. Stephens, M. Wild, P. W. Stackhouse, T. L. Ecuyer, S. Kato, and D. S. Henderson, “The global character of the flux of downward longwave radiation,” J. Climate 25(7), 2329–2340 (2012).
B. D. Belan and G. M. Krekov, “The effect of anthropogenic factor on the content of greenhouse gases in the troposphere. 1. Methane,” Opt. Atmos. Okeana 25(4), 361–373 (2012).
K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33(3–4), 535–555 (2012).
Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109(12–13), 2291–2302 (2008).
Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows,” Phil. Trans. Roy. Soc., A 370(1968), 2578–2589 (2012).
T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Ocean. Opt. 26(6), 499–506 (2013).
I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).
I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc. 370(1968), 2557–2577 (2012).
V. E. Zuev and V. S. Komarov, Statistical models of temperature and gaseous components of the atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].
G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL-TR-86-0110, Environ. Res. Paper N 954 (Air Force Geophysics Laboratory).
A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Transfer of Optical Radiation in a Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].
R. Goody, R. West, L. Chen, and D. Crisp, “The correlated-k method for radiation calculations in nonhomogeneous atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 42(6), 539–550 (1989).
A. A. Lacis and V. Oinas, “A description of the K-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res., D 96(5), 9027–9063 (1991).
K. M. Firsov and T. Yu. Chesnokova, “Influence of variations in the CH4 and N2O concentration on longwave radiative fluxes in the Earth’s atmosphere,” Atmos. Ocean. Opt. 12(9), 758–763 (1999).
L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572 (2009).
About the Environmental State in the Volgograd Region in 2009. Report of the Committee of Natural Resources and Environmental Protection of the Volgograd Region Authorities, Ed. by V.I. Novikov (Globus, Moscow, 2010) [in Russian].
V. N. Aref’ev, “Molecular absorption of radiation by water vapor in the window of relative transparency of the atmosphere 8–13 μm,” Opt. Atmos. Okeana 2(10), 1034–1054 (1989).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © K.M. Firsov, T.Yu. Chesnokova, E.V. Bobrov, 2014, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Firsov, K.M., Chesnokova, T.Y. & Bobrov, E.V. The role of the water vapor continuum absorption in near ground long-wave radiation processes of the Lower Volga region. Atmos Ocean Opt 28, 1–8 (2015). https://doi.org/10.1134/S1024856015010030
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856015010030