Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 1, pp 1–8 | Cite as

The role of the water vapor continuum absorption in near ground long-wave radiation processes of the Lower Volga region

  • K. M. FirsovEmail author
  • T. Yu. Chesnokova
  • E. V. Bobrov
Optical Waves Propagation

Abstract

Analytical formulas for the estimation of the sensitivity of downward long-wave radiative fluxes to variations in the total water vapor content in the atmospheric vertical column in the absorption bands and atmospheric transparency windows are derived. The regression dependence of the CO2 radiative forcing on the total water vapor content is calculated for the Lower Volga region. The role of the H2O continuum absorption is studied, and the CO2 radiative forcing is shown to strongly depend on the continuum magnitude. The atmospheric conditions are determined, under which the contribution of the H2O continuum due to the interaction of water vapor with air molecules to the downward radiative fluxes is maximal.

Keywords

continual absorption transfer of radiation radiative forcing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “IPCC, 2007: Changes in atmospheric constituents and in radiative forcing” in Climate Change; 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge Univ., Cambridge, UK; USA, 2007).Google Scholar
  2. 2.
    I. M. Held and B. J. Soden, “Robust responses of the hydrological cycle to global warming,” J. Climate 19(21), 5686–5699 (2006).CrossRefADSGoogle Scholar
  3. 3.
    G. L. Stephens, M. Wild, P. W. Stackhouse, T. L. Ecuyer, S. Kato, and D. S. Henderson, “The global character of the flux of downward longwave radiation,” J. Climate 25(7), 2329–2340 (2012).CrossRefADSGoogle Scholar
  4. 4.
    B. D. Belan and G. M. Krekov, “The effect of anthropogenic factor on the content of greenhouse gases in the troposphere. 1. Methane,” Opt. Atmos. Okeana 25(4), 361–373 (2012).Google Scholar
  5. 5.
    K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33(3–4), 535–555 (2012).CrossRefADSGoogle Scholar
  6. 6.
    Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109(12–13), 2291–2302 (2008).CrossRefADSGoogle Scholar
  7. 7.
    Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows,” Phil. Trans. Roy. Soc., A 370(1968), 2578–2589 (2012).CrossRefADSGoogle Scholar
  8. 8.
    T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Ocean. Opt. 26(6), 499–506 (2013).CrossRefGoogle Scholar
  9. 9.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).CrossRefADSGoogle Scholar
  10. 10.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc. 370(1968), 2557–2577 (2012).CrossRefADSGoogle Scholar
  11. 11.
    V. E. Zuev and V. S. Komarov, Statistical models of temperature and gaseous components of the atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  12. 12.
    G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL-TR-86-0110, Environ. Res. Paper N 954 (Air Force Geophysics Laboratory).Google Scholar
  13. 13.
    A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Transfer of Optical Radiation in a Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].Google Scholar
  14. 14.
    R. Goody, R. West, L. Chen, and D. Crisp, “The correlated-k method for radiation calculations in nonhomogeneous atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 42(6), 539–550 (1989).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Lacis and V. Oinas, “A description of the K-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res., D 96(5), 9027–9063 (1991).CrossRefADSGoogle Scholar
  16. 16.
    K. M. Firsov and T. Yu. Chesnokova, “Influence of variations in the CH4 and N2O concentration on longwave radiative fluxes in the Earth’s atmosphere,” Atmos. Ocean. Opt. 12(9), 758–763 (1999).Google Scholar
  17. 17.
    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572 (2009).CrossRefADSGoogle Scholar
  18. 18.
    About the Environmental State in the Volgograd Region in 2009. Report of the Committee of Natural Resources and Environmental Protection of the Volgograd Region Authorities, Ed. by V.I. Novikov (Globus, Moscow, 2010) [in Russian].Google Scholar
  19. 19.
    V. N. Aref’ev, “Molecular absorption of radiation by water vapor in the window of relative transparency of the atmosphere 8–13 μm,” Opt. Atmos. Okeana 2(10), 1034–1054 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. M. Firsov
    • 1
    Email author
  • T. Yu. Chesnokova
    • 2
  • E. V. Bobrov
    • 1
  1. 1.Volgograd State UniversityVolgogradRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations