Atmospheric and Oceanic Optics

, Volume 28, Issue 1, pp 24–33 | Cite as

Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body

  • V. A. BanakhEmail author
  • A. A. Sukharev
  • A. V. Falits
Optics of Stochastically-Heterogeneous Media


This paper presents results of the analysis of the mean intensity, intensity fluctuations, and regular and random shifts of optical beams propagating through a shock wave resulting from the supersonic motion of a conical body in a turbulent atmosphere. It is shown that aero-optical effects caused by a shock wave are suppressed with an increase in the optical turbulence. Quantitative data illustrating the degree of the manifestation of aero-optical effects for paths with different geometry and length depending on turbulent conditions of light propagation are presented.


shock wave mean intensity turbulence variance of intensity fluctuations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Frumker and O. Pade, “Generic method for aerooptic evaluations,” Appl. Opt. 43(16), 3224–3228 (2004).CrossRefADSGoogle Scholar
  2. 2.
    O. Pade, “Models of turbulence for aero-optics applications,” Proc. SPIE—Int. Soc. Opt. Eng. 4419, 494–498 (2001).ADSGoogle Scholar
  3. 3.
    T. Wang, Y. Zhao, D. Xu, and Q. Y. Yang, “Numerical study of evaluating the optical quality of supersonic flow fields,” Appl. Opt. 46(23), 5545–5551 (2007).CrossRefADSGoogle Scholar
  4. 4.
    K. Wang and M. Wang, “Aero-optics of subsonic turbulent boundary layers,” J. Fluid Mech. 696, 122–151 (2012).CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    F. R. Zubair and H. J. Catrakis, “Aero-optical interaction along laser beam propagation paths in compressible turbulence,” AIAA J. 45(7), 1663–1674 (2007).CrossRefADSGoogle Scholar
  6. 6.
    Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Y. X. Zhao, “Hierarchical structure of the optical path length of the supersonic turbulent boundary layer,” Opt. Express 20(15), 16494–16503 (2012).CrossRefADSGoogle Scholar
  7. 7.
    A. Buckner, S. Gordeyev, and E. J. Jumper, “Optical aberrations caused by transonic attached boundary layers: underlying flow structure,” AIAA Paper 2005-0752.Google Scholar
  8. 8.
    R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optic correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46(11), 2787–2795 (2008).CrossRefADSGoogle Scholar
  9. 9.
    O. Pade, “Optical propagation trough turbulent jets,” Proc. SPIE—Int. Soc. Opt. Eng. 5572, 24–33 (2004).ADSGoogle Scholar
  10. 10.
    E. Frumker, O. Pade, and P. I. Rojt, “Optical distortions caused by propagation through turbulent shear layers,” Proc. SPIE—Int. Soc. Opt. Eng. 5237, 31–38 (2004).ADSGoogle Scholar
  11. 11.
    O. Pade, “Propagation through shear layers,” Proc. SPIE—Int. Soc. Opt. Eng. 6364, 63640 (2006).ADSGoogle Scholar
  12. 12.
    V. A. Banakh, V. I. Zapryagaev, I. N. Kavun, V. M. Sazanovich, and R. Sh. Tsvyk, “Experimental investigations of the variance and fluctuation spectra of intensity of a laser beam crossing the supersonic gas flow,” Atmos. Ocean. Opt. 20(5), 368–373 (2007).Google Scholar
  13. 13.
    V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the radial dependence of the structural characteristic of the refractive index in a supersonic gas flow from laser beam intensity fluctuations,” Opt. Spectrosc. 108(1), 117–122 (2010).CrossRefADSGoogle Scholar
  14. 14.
    V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the structural characteristic of the refractive index and average air density in a shock wave arising in a supersonic flow past obstacles from optical measurements,” Opt. Spectrosc. 111(6), 1032–1037 (2011).Google Scholar
  15. 15.
    V. A. Banakh, V. I. Zapryagaev, V. M. Sazanovich, A. A. Sukharev, and R. Sh. Tsvyk, “Experimental research by optical methods of turbulence above the model, blown by the supersonic flow,” Opt. Atmos. Okeana 23(12), 1091–1098 (2010).Google Scholar
  16. 16.
    V. A. Banakh, A. A. Sukharev, and A. I. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26(11), 932–941 (2013).Google Scholar
  17. 17.
    A. S. Gurvich and M. E. Gracheva, “A simple model for calculation of turbulent noises in optical systems,” Izv. AN SSSR, Fiz. Atmos. Okeana 16(10), 1107–1111 (1980).ADSGoogle Scholar
  18. 18.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere. Modern Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988), Vol. 5 [in Russian].Google Scholar
  19. 19.
    V. P. Kandidov, “Monte Carlo method in nonlinear statistical optics,” Phys.-Uspekhi 39(12), 1243–1272 (1996).CrossRefADSGoogle Scholar
  20. 20.
    V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Effectiveness of the subharmonic method in problems of computer simulation of laser beam propagation in a turbulent atmosphere,” Atmos. Ocean. Opt. 25(2), 106–109 (2012).CrossRefGoogle Scholar
  21. 21.
    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].Google Scholar
  22. 22.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978), part 2 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations