G. A. Askar’yan, “Effect of the gradient of the field of a high-power electromagnetic beam on atoms and electrons,” J. Exp. Teor. Fiz. 42(6), 1567 (1962).
Google Scholar
V. E. Zakharov and E. A. Kuznetsov, “”Solitons and collapses: Two evolution scenarios of nonlinear wave systems,” Phys.-Uspekhi 55(6), 535–556 (2012).
ADS
Article
Google Scholar
A. A. Manenkov, “Self-focusing of laser pulses: Current state and future prospects,” Phys.-Uspekhi 54(1), 100–104 (2011).
ADS
Article
Google Scholar
R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Selffocusing: Past and Present (Springer Science, Business Media, LLC, 2009).
Google Scholar
N. F. Pilipetskii and A. R. Rustamov, “Observation of selffocusing of light in liquids,” JETP Lett. 2(2), 55–57 (1965).
Google Scholar
A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
ADS
Article
Google Scholar
J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).
ADS
Article
Google Scholar
G. Mechain, A. Couairon, Y.-B. Andre, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys., B 79, 379–382 (2004).
Article
Google Scholar
Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics, Ed. by A. A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].
S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Light self-focusing and diffraction in nonlinear media,” Uspekhi Fiz. Nauk 93(1), 19–69 (1967).
Google Scholar
V. P. Kandidov, S. A. Shlenov, E. P. Silaeva, and A. A. Dergachev, “Filamentation of high-power femtosecond laser radiation in air and its application in atmospheric optics,” Opt. Atmosf. Okeana 23(10), 873–884 (2010).
Google Scholar
W. Liu, J.-F. Gravel, F. Theberge, A. Becker, and S. L. Chin, “Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys., B 80(7), 857–860 (2005).
ADS
Article
Google Scholar
N. N. Rozanov, Dissipative Optical Solitones from Micro- to Nano- and Atto- (Fizmatlit, Moscow, 2011) [in Russian].
Google Scholar
A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air,” Atmos. Ocean. Opt. 25(2), 97–105 (2012).
Article
Google Scholar
T. D. Grow, A. A. Ishaaya, L. T. Vuong, Al. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-gaussian beams,” Opt. Express. 14, 5468–5475 (2006).
ADS
Article
Google Scholar
L. L. Tatarinova and M. E. Garcia, “Exact solutions of the eikonal equations describing self-focusing in highly nonlinear geometrical optics,” Phys. Rev., A 78, 021806 (2008).
ADS
Article
Google Scholar
M. Born, and E. Wolf, Principles of Optics (Pergamon, New York, 1964).
Google Scholar
S. G. Rautian, “Quasi-ray tubes,” Opt. Spectrosc. 87(3), 456–458 (1999).
ADS
Google Scholar
I. R. Shen, Principles of Nonlinear Optics (Nauka, Moscow, 1989) [in Russian].
Google Scholar
Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation: Size factor of a light beam,” Atmos. Ocean. Opt. 26(5), 357–363 (2013).
Article
Google Scholar
Hao Zuoqiang, Zhang Jie, Lu Xin, Xi Tingting, Zhang Zhe, and Wang Zhaohua, “Energy interchange between large-scale free propagating filaments and its background reservoir,” Opt. Soc. Amer. B 26(3), 499–502 (2009).
ADS
Article
Google Scholar
S. L. Chin, “Femtosecond laser filamentation,” in Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2010), vol. 551.
Google Scholar
Yu. A. Kravtsov and Yu. I. Orlov, “Caustic surfaces, catastrophes, and wave fields,” Uspekhi Fiz. Nauk 141(4), 591–627 (1983).
ADS
Article
MathSciNet
Google Scholar
Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Filament formation beyond linear focus during femtosecond laser pulse propagation in air,” Atmos. Ocean. Opt. 26(2), 96–103 (2013).
Article
Google Scholar
A. D. Bulygin, Yu. E. Geints, and A. A. Zemlyanov, “Evolution of the effective radius of femtosecond laser beam after its global self-focusing in air,” Atmos. Ocean. Opt. 20(11), 887–893 (2007).
Google Scholar
A. Couairon, “Filamentation length of powerful laser pulses,” Appl. Phys., B 76(7), 789–792 (2003).
ADS
Article
Google Scholar
S. V. Popruzhenko, V. D. Mur, V. S. Popov, and D. Bauer, “Strong field ionization rate for arbitrary laser frequencies,” Phys. Rev. Lett. 101, 193003 (2008).
ADS
Article
Google Scholar
G. Korn and T. Korn, Handbook on Higher Mathematics for Researchers and Engineers (Nauka, Moscow, 1974) [in Russian].
Google Scholar