Skip to main content

Energy light structures during femtosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing

Abstract

A class of energy light structures in nonlinear wave physics, so-called diffraction-beam tubes in a self-focusing dissipative medium, has been studied. It is shown that their interaction along a high-power femtosecond laser radiation propagation path produces areas of light energy localization, stable in physical characteristics, i.e., a filament and a post-filamentation channel, as well as an energy-conservative periphery. Stabilization of boundaries of the above areas is provided by additional contraction of a diffractive nature from the side of the periphery. The dependencies of filamentation length of a laser pulse on the power and beam radius and the fact of high intensity conservation in the post-filamentation light channel are interpreted using this concept.

This is a preview of subscription content, access via your institution.

References

  1. G. A. Askar’yan, “Effect of the gradient of the field of a high-power electromagnetic beam on atoms and electrons,” J. Exp. Teor. Fiz. 42(6), 1567 (1962).

    Google Scholar 

  2. V. E. Zakharov and E. A. Kuznetsov, “”Solitons and collapses: Two evolution scenarios of nonlinear wave systems,” Phys.-Uspekhi 55(6), 535–556 (2012).

    ADS  Article  Google Scholar 

  3. A. A. Manenkov, “Self-focusing of laser pulses: Current state and future prospects,” Phys.-Uspekhi 54(1), 100–104 (2011).

    ADS  Article  Google Scholar 

  4. R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Selffocusing: Past and Present (Springer Science, Business Media, LLC, 2009).

    Google Scholar 

  5. N. F. Pilipetskii and A. R. Rustamov, “Observation of selffocusing of light in liquids,” JETP Lett. 2(2), 55–57 (1965).

    Google Scholar 

  6. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).

    ADS  Article  Google Scholar 

  7. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).

    ADS  Article  Google Scholar 

  8. G. Mechain, A. Couairon, Y.-B. Andre, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys., B 79, 379–382 (2004).

    Article  Google Scholar 

  9. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics, Ed. by A. A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

  10. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Light self-focusing and diffraction in nonlinear media,” Uspekhi Fiz. Nauk 93(1), 19–69 (1967).

    Google Scholar 

  11. V. P. Kandidov, S. A. Shlenov, E. P. Silaeva, and A. A. Dergachev, “Filamentation of high-power femtosecond laser radiation in air and its application in atmospheric optics,” Opt. Atmosf. Okeana 23(10), 873–884 (2010).

    Google Scholar 

  12. W. Liu, J.-F. Gravel, F. Theberge, A. Becker, and S. L. Chin, “Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys., B 80(7), 857–860 (2005).

    ADS  Article  Google Scholar 

  13. N. N. Rozanov, Dissipative Optical Solitones from Micro- to Nano- and Atto- (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  14. A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air,” Atmos. Ocean. Opt. 25(2), 97–105 (2012).

    Article  Google Scholar 

  15. T. D. Grow, A. A. Ishaaya, L. T. Vuong, Al. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-gaussian beams,” Opt. Express. 14, 5468–5475 (2006).

    ADS  Article  Google Scholar 

  16. L. L. Tatarinova and M. E. Garcia, “Exact solutions of the eikonal equations describing self-focusing in highly nonlinear geometrical optics,” Phys. Rev., A 78, 021806 (2008).

    ADS  Article  Google Scholar 

  17. M. Born, and E. Wolf, Principles of Optics (Pergamon, New York, 1964).

    Google Scholar 

  18. S. G. Rautian, “Quasi-ray tubes,” Opt. Spectrosc. 87(3), 456–458 (1999).

    ADS  Google Scholar 

  19. I. R. Shen, Principles of Nonlinear Optics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  20. Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation: Size factor of a light beam,” Atmos. Ocean. Opt. 26(5), 357–363 (2013).

    Article  Google Scholar 

  21. Hao Zuoqiang, Zhang Jie, Lu Xin, Xi Tingting, Zhang Zhe, and Wang Zhaohua, “Energy interchange between large-scale free propagating filaments and its background reservoir,” Opt. Soc. Amer. B 26(3), 499–502 (2009).

    ADS  Article  Google Scholar 

  22. S. L. Chin, “Femtosecond laser filamentation,” in Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2010), vol. 551.

    Google Scholar 

  23. Yu. A. Kravtsov and Yu. I. Orlov, “Caustic surfaces, catastrophes, and wave fields,” Uspekhi Fiz. Nauk 141(4), 591–627 (1983).

    ADS  Article  MathSciNet  Google Scholar 

  24. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Filament formation beyond linear focus during femtosecond laser pulse propagation in air,” Atmos. Ocean. Opt. 26(2), 96–103 (2013).

    Article  Google Scholar 

  25. A. D. Bulygin, Yu. E. Geints, and A. A. Zemlyanov, “Evolution of the effective radius of femtosecond laser beam after its global self-focusing in air,” Atmos. Ocean. Opt. 20(11), 887–893 (2007).

    Google Scholar 

  26. A. Couairon, “Filamentation length of powerful laser pulses,” Appl. Phys., B 76(7), 789–792 (2003).

    ADS  Article  Google Scholar 

  27. S. V. Popruzhenko, V. D. Mur, V. S. Popov, and D. Bauer, “Strong field ionization rate for arbitrary laser frequencies,” Phys. Rev. Lett. 101, 193003 (2008).

    ADS  Article  Google Scholar 

  28. G. Korn and T. Korn, Handbook on Higher Mathematics for Researchers and Engineers (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zemlyanov.

Additional information

Original Russian Text © A.A. Zemlyanov, A.D. Bulygin, Yu.E. Geints, 2013, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zemlyanov, A.A., Bulygin, A.D. & Geints, Y.E. Energy light structures during femtosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing. Atmos Ocean Opt 27, 463–474 (2014). https://doi.org/10.1134/S1024856014060244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014060244

Keywords

  • self-focusing
  • filamentation
  • refocusing
  • diffraction-beam tube