Skip to main content

Hydrocarbon composition of tropospheric aerosol in the south of Western Siberia

Abstract

We considered the methodological questions: aerosol sampling on board research aircraft, extraction of an organic component, and identification of its constituent compounds. It is verified how aviation materials (kerosene, oil, hydraulic fluid) can influence the measurement data. We analyzed the composition of organic components of atmospheric aerosol, sampled in the winter-spring period of 2013 at altitudes of 500–7000 m over the southern part of the Novosibirsk reservoir. In the samples, we identified the normal-structure alkanes, cyclanes, and alkyl arenes. Cyclic saturated and alkyl aromatic hydrocarbons were detected in the composition of atmospheric aerosols of Western Siberia for the first time.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. A. Zaveri, W. J. Shaw, D. J. Cziczo, B. Schmid, R. A. Ferrare, M. L. Alexander, M. Alexandrov, R. J. Alvarez, W. P. Arnott, D. B. Atkinson, S. Baidar, R. M. Banta, J. C. Barnard, J. Beranek, L. K. Berg, F. Brechtel, W. A. Brewer, J. F. Cahill, B. Cairns, C. D. Cappa, D. Chand, S. China, J. M. Comstock, M. K. Dubey, R. C. Easter, M. H. Erickson, J. D. Fast, C. Floerchinger, B. A. Flowers, E. Fortner, J. S. Gaffney, M. K. Gilles, K. Gorkowski, W. I. Gustafson, M. Gyawali, J. Hair, R. M. Hardesty, J. W. Harworth, S. Herndon, N. Hiranuma, C. Hostetler, J. M. Hubbe, J. T. Jayne, H. Jeong, B. T. Jobson, E. I. Kassianov, L. I. Kleinman, C. Kluzek, B. Knighton, K. R. Kolesar, C. Kuang, A. Kubátová, A. O. Langford, A. Laskin, N. Laulainen, R. D. Marchbanks, C. Mazzoleni, F. Mei, R. C. Moffet, D. Nelson, M. D. Obland, H. Oetjen, T. B. Onasch, I. Ortega, M. Ottaviani, M. Pekour, K. A. Prather, J. G. Radney, R. R. Rogers, S. P. Sandberg, A. Sedlacek, C. J. Senff, G. Senum, A. Setyan, J. E. Shilling, M. Shrivastava, C. Song, S. R. Springston, R. Subramanian, K. Suski, J. Tomlinson, R. Volkamer, H. W. Wallace, J. Wang, A. M. Weickmann, D. R. Worsnop, X.-Y. Yu, A. Zelenyuk, and Q. Zhang, “Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES),” Atmos. Chem. Phys. 12(16), 7647–7687 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    N. A. Fuks, Mechanics of Aerosols (AN SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  3. 3.

    K. Ya. Kondrat’ev, “Aerosol as a climate-forming component of the atmosphere. 2. Direct and indirect impact on climate,” Atmos. Ocean. Opt. 15(4), 267–284 (2002).

    Google Scholar 

  4. 4.

    J. Bialek, M. Dall’Osto, C. Monahan, D. Beddows, and C. O’Dowd, “On the contribution of organics to the North East Atlantic aerosol number concentration,” Environ. Res. Lett. 7, 044013, 7 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    M. Elsasser, M. Crippa, J. Orasche, P. F. DeCarlo, M. Oster, M. Pitz, J. Cyrys, T. L. Gustafson, J. B. C. Pettersson, J. Schnelle-Kreis, A. S. H. Prevot, and R. Zimmermann, “Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: Aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany,” Atmos. Chem. Phys. 12(14), 6113–6128 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    X. Ge, A. S. Wexler, and S. L. Clegg, “Atmospheric amines—Part 1. A review,” Atmos. Environ. 45(3), 524–545 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Z. Wang, T. Wang, J. Guo, R. Gao, L. Xue, J. Zhang, Y. Zhou, X. Zhou, Q. Zhang, and W. Wang, “Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China,” Atmos. Environ. 46(1), 516–527 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    K. M. Shakya, P. F., Jr. Place, R. J. Griffin, and R.W. Talbot, “Carbonaceous content and water-soluble organic functionality of atmospheric aerosols at a semirural New England location,” J. Geophys. Res. 117, D03301 (2012). doi: 10.1029/2011JD016113

    ADS  Google Scholar 

  9. 9.

    K. H. Kim, K. Sekiguchi, S. Kudo, M. Kinoshita, and K. Sakamoto, “Carbonaceous and ionic components in ultrafine and fine particles at four sampling sites in the vicinity of roadway intersection,” Atmos. Environ. 74, 83–92 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    C. Pio, M. Cerqueira, R. M. Harrison, T. Nunes, F. Mirante, C. Alves, C. Oliveira, A. S. de la Campa, B. Artinano, and M. Matos, “OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon,” Atmos. Environ. 45(34), 6121–6132 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    M. F. Heringa, P. F. DeCarlo, R. Chirico, T. Tritscher, M. Clairotte, C. Mohr, M. Crippa, J. G. Slowik, L. Pfaffenberger, J. Dommen, E. Weingartner, A. S. H. Prevot, and U. Baltensperger, “A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra,” Atmos. Chem. Phys. 12(4), 2189–2203 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    M. R. Perrone, A. Piazzalunga, M. Prato, and I. Caro- falo, “Composition of fine and coarse particles in a coastal site of the Central Mediterranean: Carbonaceous species contributions,” Atmos. Environ. 45(39), 7470–7477 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    X. Zhang, J. Liu, E. T. Parker, P. L. Hayes, J. L. Jimenez, J. A. de Gouw, J. H. Flynn, N. Grossberg, B. L. Lefer, and R. J. Weber, “On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon,” J. Geophys. Res. 117, D00V16 (2012). doi 10.1029/2012JD017908

    ADS  Google Scholar 

  14. 14.

    X. Zhang, Z. Liu, A. Hecobian, M. Zheng, N. H. Frank, E. S. Edgerton, and R. J. Weber, “Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: Implications for secondary organic aerosol formation,” Atmos. Chem. Phys. 12(14), 6593–6607 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    L. D. Ziemba, R. J. Griffi, S. Whitlow, and R. W. Talbot, “Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution,” Atmos. Environ. 45(39), 7310–7329. 2011.

    ADS  Article  Google Scholar 

  16. 16.

    Ch. Pöhlker, K. T. Wiedemann, B. Sinha, M. Shiraiwa, S. S. Gunthe, M. Smith, H. Su, P. Artaxo, Q. Chen, Y. Cheng, W. Elbert, M. K. Gilles, A. L. D. Kilcoyne, R. C. Moffet, M. Weigand, S. T. Martin, U. Pöschl, and M. O. Andreae, “Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon,” Science 337(6098), 1075–1078 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    V. F. McNeill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, M. I. Guzman, D. Heger, T. F. Kahan, P. Klan, S. Masclin, C. Toubin, and D. Voisin, “Organics in environmental ices: Sources, chemistry, and impacts,” Atmos. Chem. Phys. 12(20), 9653–9678 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    S. M. Burrows, C. Hoose, U. Poschl, and M. G. Lawrence, “Ice nuclei in marine air: Biogenic particles or dust?,” Atmos. Chem. Phys. 13(1), 245–267 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes, “Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets,” Atmos. Chem. Phys. 13(10), 5117–5135 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    D. Y. Lee and A. S. Wexler, “Atmospheric amines—Part III: Photochemistry and toxicity,” Atmos. Environ. 71, 95–103 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    J.-H. Park, A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger, “Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds,” Science 341(6146), 643–647 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    G. J. Doyle, “Self-nucleation in the sulfuric acid-water system,” J. Chem. Phys., No. 35, 795–799 (1961).

    Google Scholar 

  23. 23.

    M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V. M. Kerminen, W. Birmili, and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: A review of observations,” J. Aerosol Sci. 35(2), 143–176 (2004).

    Article  Google Scholar 

  24. 24.

    J. H. Kroll and J. H. Seinfeld, “Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere,” Atmos. Environ. 42(16), 3593–3624 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    A. Kiendler-Scharr, J. Wildt, M. Maso Dal, T. Hohaus, E. Kleist, T. F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, and A. Wahner, “New particle formation in forests inhibited by isoprene emissions,” Nature (Gr. Brit.) 461(7262), 381–383 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    J. R. Pierce, I. Riipinen, M. Kulmala, M. Ehn, T. Petäjä, H. Junninen, D. R. Worsnop, and N. M. Donahue, “Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events,” Atmos. Chem. Phys. 11(17), 9019–9036 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    I. K. Ortega, T. Suni, M. Boy, T. Gronholm, H. E. Manninen, T. Nieminen, M. Ehn, H. Junninen, H. Hakola, H. Hellen, T. Valmari, H. Arvela, S. Zegelin, D. Hughes, M. Kitchen, H. Cleugh, D. R. Worsnop, M. Kulmala, and V.-M. Kerminen, “New insights into nocturnal nucleation,” Atmos. Chem. Phys. 12(9), 4297–4312 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    S. Liu, D. A. Day, J. E. Shields, and L. M. Russell, “Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups,” Atmos. Chem. Phys. 11(16), 8321–8341 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    H. L. Wang, D. Huang, X. Zhang, Y. Zhao, and Z. M. Chen, “Understanding the aqueous phase ozonolysis of isoprene: Distinct product distribution and mechanism from the gas phase reaction,” Atmos. Chem. Phys. 12(15), 7187–7198 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    T. J. Barnum, N. Medeiros, and R. Z. Hinrichs, “Condensed-phase versus gas-phase ozonolysis of catechol: A combined experimental and theoretical study,” Atmos. Environ. 55(1), 98–106 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    A. Kiendler-Scharr, S. Andres, M. Bachner, K. Behnke, S. Broch, A. Hofzumahaus, F. Holland, E. Kleist, T. F. Mentel, F. Rubach, M. Springer, B. Steitz, R. Tillmann, A. Wahner, J.-P. Schnitzler, and J. Wildt, “Isoprene in poplar emissions: effects on new particle formation and OH concentrations,” Atmos. Chem. Phys. 12(2), 1021–1030 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    S. A. Epstein and S. A. Nizkorodov, “A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase,” Atmos. Chem. Phys. 12(17), 8205–8222 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    N. C. Eddingsaas, C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg, “α-pinene photooxidation under controlled chemical conditions. Part 2: SOA yield and composition in low- and high-NOx environments,” Atmos. Chem. Phys. 12(16), 7413–7427 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    A. W. Rollins, E. C. Browne, K.-E. Min, S. E. Pusede, P. J. Wooldridge, D. R. Gentner, A. H. Goldstein, S. Liu, D. A. Day, L. M. Russell, and R. C. Cohen, “Evidence for NOx control over nighttime SOA formation,” Science 337(6099), 1210–1212 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Ch. Liu, B. Chu, Y. Liu, Q. Ma, J. Ma, H. He, J. Li, J. Hao, “Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-Pinene/NOx photooxidation,” Atmos. Environ. 77, 781–789 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    F. Riccobono, L. Rondo, M. Sipila, P. Barmet, J. Curtius, J. Dommen, M. Ehn, S. Ehrhart, M. Kulmala, A. Kurten, J. Mikkila, P. Paasonen, T. Petäjä, E. Weingartner, and U. Baltensperger, “Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth,” Atmos. Chem. Phys. 12(20), 9427–9439 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    I. Gensch, W. Laumer, O. Stein, B. Kammer, T. Hohaus, H. Saathoff, R. Wegener, A. Wahner, and A. Kiendler-Scharr, “Temperature dependence of the kinetic isotope effect in b-pinene ozonolysis,” J. Geophys. Res. 116, D20301 (2011). doi: 10.1029/2011JD016084

    ADS  Article  Google Scholar 

  38. 38.

    M. C. Day and S. N. Pandis, “Predicted changes in summertime organic aerosol concentrations due to increased temperatures,” Atmos. Environ. 45(36), 6546–6556 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    B. Chu, J. Hao, H. Takekawa, J. Li, K. Wang, J. Jiang, “The Remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx,” Atmos. Environ. 55(1), 26–34 (2012).

    ADS  Article  Google Scholar 

  40. 40.

    V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimiya, Leningrad, 1985) [in Russian].

    Google Scholar 

  41. 41.

    O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, “Direct kinetic measurements of criegee intermediate (CH2OO) formed by reaction of CH2I with O2,” Science 335(6065), 204–207 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, “Infrared absorption spectrum of the simplest criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, “Direct measurements of conformer-dependent reactivity of the criegee intermediate CH3CHOO,” Science 340(6129), 177–180 (2013).

    ADS  Article  Google Scholar 

  44. 44.

    C. D. Cappa, D. L. Che, S. H. Kessler, et al., “atVariations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation,” J. Geophys. Res. 116, D15203 (2011).

    ADS  Article  Google Scholar 

  45. 45.

    M. Zhong and M. Jang, “Light absorption coefficient measurement of SOA using a UV-visible spectrometer connected with an integrating sphere,” Atmos. Environ. 45(25), 4263–4271 (2011).

    ADS  Article  Google Scholar 

  46. 46.

    V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimiya, Leningrad, 1985) [in Russian].

    Google Scholar 

  47. 47.

    K. Ravindra, R. Sokhi, and R. Van Grieken, “atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation,” Atmos. Environ. 42(13), 2895–2921 (2008).

    ADS  Article  Google Scholar 

  48. 48.

    D. Fowler, K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Lajo, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Fle- chard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horvath, F. Loreto, U. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Bruggemann, S. Zechmeister-Boltenstern, J. Williams, C. O’ Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, and J. W. Erisman, “Atmospheric composition change: Ecosystems-atmosphere interactions,” Atmos. Environ. 43(33), 5193–5267 (2009).

    ADS  Article  Google Scholar 

  49. 49.

    G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “Tu-134 aicraft laboratory ‘Optik’,” Opt. Atmosf. Okeana 24(9), 805–816 (2011).

    Google Scholar 

  50. 50.

    M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, “Interpretation of high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry data acquired from atmospheric organic aerosol samples,” Aerosol. Sci. Technol. 10(2), 408–420 (1989).

    Article  Google Scholar 

  51. 51.

    W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants,” Environ. Sci. Technol. 27(13), 2700–2711 (1993).

    ADS  Article  Google Scholar 

  52. 52.

    W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 5. Natural gas home appliances,” Environ. Sci. Technol. 27(13), 2736–2744 (1993).

    ADS  Article  Google Scholar 

  53. 53.

    W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks,” Environ. Sci. Technol. 27(4), 636–651 (1993).

    ADS  Article  Google Scholar 

  54. 54.

    P. L. Hayes, A. M. Ortega, M. J. Cubison, K. D. Froyd, Y. Zhao, S. S. Cliff, W. W. Hu, D. W. Toohey, J. H. Flynn, B. L. Lefer, N. Grossberg, S. Alvarez, B. Rappengluck, J. W. Taylor, J. D. Allan, J. S. Holloway, J. B. Gilman, W. C. Kuster, J. A. de Gouw, P. Massoli, X. Zhang, J. Liu, R. J. Weber, A. L. Corrigan, L. M. Russell, G. Isaacman, D. R. Worton, N. M. Kreisberg, A. H. Goldstein, R. Thalman, E. M. Waxman, R. Volkamer, Y. H. Lin, J. D. Surratt, T. E. Kleindienst, J. H. Offenberg, S. Dusanter, S. Griffith, P. S. Stevens, J. Brioude, W. M. Angevine, and J. L. Jimenez, “Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign,” J. Geophys. Res. 118(16), 9233–9257 (2013).

    Google Scholar 

  55. 55.

    M. Crippa, F. Canonaco, J. G. Slowik, I. El. Haddad, P. F. DeCarlo, C. Mohr, M. F. Heringa, R. Chirico, N. Marchand, B. Temime-Roussel, E. Abidi, L. Poulain, A. Wiedensohler, U. Baltensperger, and A. S. H. Prevot, “Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment,” Atmos. Chem. Phys. 13(16), 8411–8426 (2013).

    ADS  Article  Google Scholar 

  56. 56.

    L. D. Yee, J. S. Craven, C. L. Loza, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld, “Effect of chemical structure on secondary organic aerosol formation from C12 alkanes,” Atmos. Chem. Phys. 13(21), 11121–11140 (2013).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. G. Voronetskaya.

Additional information

Original Russian Text © N.G. Voronetskaya, G.S. Pevneva, A.K. Golovko, A.S. Kozlov, M.Yu. Arshinov, B.D. Belan, D.V. Simonenkov, G.N. Tolmachev, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronetskaya, N.G., Pevneva, G.S., Golovko, A.K. et al. Hydrocarbon composition of tropospheric aerosol in the south of Western Siberia. Atmos Ocean Opt 27, 547–557 (2014). https://doi.org/10.1134/S1024856014060207

Download citation

Keywords

  • atmospheric aerosol
  • composition
  • hydrocarbons
  • n-alkanes
  • cyclanes
  • alkylnaphthalenes
  • alkylphenanthrenes