Advertisement

Atmospheric and Oceanic Optics

, Volume 27, Issue 6, pp 547–557 | Cite as

Hydrocarbon composition of tropospheric aerosol in the south of Western Siberia

  • N. G. VoronetskayaEmail author
  • G. S. Pevneva
  • A. K. Golovko
  • A. S. Kozlov
  • M. Yu. Arshinov
  • B. D. Belan
  • D. V. Simonenkov
  • G. N. Tolmachev
Optical Models and Databases

Abstract

We considered the methodological questions: aerosol sampling on board research aircraft, extraction of an organic component, and identification of its constituent compounds. It is verified how aviation materials (kerosene, oil, hydraulic fluid) can influence the measurement data. We analyzed the composition of organic components of atmospheric aerosol, sampled in the winter-spring period of 2013 at altitudes of 500–7000 m over the southern part of the Novosibirsk reservoir. In the samples, we identified the normal-structure alkanes, cyclanes, and alkyl arenes. Cyclic saturated and alkyl aromatic hydrocarbons were detected in the composition of atmospheric aerosols of Western Siberia for the first time.

Keywords

atmospheric aerosol composition hydrocarbons n-alkanes cyclanes alkylnaphthalenes alkylphenanthrenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Zaveri, W. J. Shaw, D. J. Cziczo, B. Schmid, R. A. Ferrare, M. L. Alexander, M. Alexandrov, R. J. Alvarez, W. P. Arnott, D. B. Atkinson, S. Baidar, R. M. Banta, J. C. Barnard, J. Beranek, L. K. Berg, F. Brechtel, W. A. Brewer, J. F. Cahill, B. Cairns, C. D. Cappa, D. Chand, S. China, J. M. Comstock, M. K. Dubey, R. C. Easter, M. H. Erickson, J. D. Fast, C. Floerchinger, B. A. Flowers, E. Fortner, J. S. Gaffney, M. K. Gilles, K. Gorkowski, W. I. Gustafson, M. Gyawali, J. Hair, R. M. Hardesty, J. W. Harworth, S. Herndon, N. Hiranuma, C. Hostetler, J. M. Hubbe, J. T. Jayne, H. Jeong, B. T. Jobson, E. I. Kassianov, L. I. Kleinman, C. Kluzek, B. Knighton, K. R. Kolesar, C. Kuang, A. Kubátová, A. O. Langford, A. Laskin, N. Laulainen, R. D. Marchbanks, C. Mazzoleni, F. Mei, R. C. Moffet, D. Nelson, M. D. Obland, H. Oetjen, T. B. Onasch, I. Ortega, M. Ottaviani, M. Pekour, K. A. Prather, J. G. Radney, R. R. Rogers, S. P. Sandberg, A. Sedlacek, C. J. Senff, G. Senum, A. Setyan, J. E. Shilling, M. Shrivastava, C. Song, S. R. Springston, R. Subramanian, K. Suski, J. Tomlinson, R. Volkamer, H. W. Wallace, J. Wang, A. M. Weickmann, D. R. Worsnop, X.-Y. Yu, A. Zelenyuk, and Q. Zhang, “Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES),” Atmos. Chem. Phys. 12(16), 7647–7687 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    N. A. Fuks, Mechanics of Aerosols (AN SSSR, Moscow, 1955) [in Russian].Google Scholar
  3. 3.
    K. Ya. Kondrat’ev, “Aerosol as a climate-forming component of the atmosphere. 2. Direct and indirect impact on climate,” Atmos. Ocean. Opt. 15(4), 267–284 (2002).Google Scholar
  4. 4.
    J. Bialek, M. Dall’Osto, C. Monahan, D. Beddows, and C. O’Dowd, “On the contribution of organics to the North East Atlantic aerosol number concentration,” Environ. Res. Lett. 7, 044013, 7 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    M. Elsasser, M. Crippa, J. Orasche, P. F. DeCarlo, M. Oster, M. Pitz, J. Cyrys, T. L. Gustafson, J. B. C. Pettersson, J. Schnelle-Kreis, A. S. H. Prevot, and R. Zimmermann, “Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: Aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany,” Atmos. Chem. Phys. 12(14), 6113–6128 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    X. Ge, A. S. Wexler, and S. L. Clegg, “Atmospheric amines—Part 1. A review,” Atmos. Environ. 45(3), 524–545 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    Z. Wang, T. Wang, J. Guo, R. Gao, L. Xue, J. Zhang, Y. Zhou, X. Zhou, Q. Zhang, and W. Wang, “Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China,” Atmos. Environ. 46(1), 516–527 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    K. M. Shakya, P. F., Jr. Place, R. J. Griffin, and R.W. Talbot, “Carbonaceous content and water-soluble organic functionality of atmospheric aerosols at a semirural New England location,” J. Geophys. Res. 117, D03301 (2012). doi: 10.1029/2011JD016113ADSGoogle Scholar
  9. 9.
    K. H. Kim, K. Sekiguchi, S. Kudo, M. Kinoshita, and K. Sakamoto, “Carbonaceous and ionic components in ultrafine and fine particles at four sampling sites in the vicinity of roadway intersection,” Atmos. Environ. 74, 83–92 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    C. Pio, M. Cerqueira, R. M. Harrison, T. Nunes, F. Mirante, C. Alves, C. Oliveira, A. S. de la Campa, B. Artinano, and M. Matos, “OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon,” Atmos. Environ. 45(34), 6121–6132 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    M. F. Heringa, P. F. DeCarlo, R. Chirico, T. Tritscher, M. Clairotte, C. Mohr, M. Crippa, J. G. Slowik, L. Pfaffenberger, J. Dommen, E. Weingartner, A. S. H. Prevot, and U. Baltensperger, “A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra,” Atmos. Chem. Phys. 12(4), 2189–2203 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    M. R. Perrone, A. Piazzalunga, M. Prato, and I. Caro- falo, “Composition of fine and coarse particles in a coastal site of the Central Mediterranean: Carbonaceous species contributions,” Atmos. Environ. 45(39), 7470–7477 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    X. Zhang, J. Liu, E. T. Parker, P. L. Hayes, J. L. Jimenez, J. A. de Gouw, J. H. Flynn, N. Grossberg, B. L. Lefer, and R. J. Weber, “On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon,” J. Geophys. Res. 117, D00V16 (2012). doi 10.1029/2012JD017908ADSGoogle Scholar
  14. 14.
    X. Zhang, Z. Liu, A. Hecobian, M. Zheng, N. H. Frank, E. S. Edgerton, and R. J. Weber, “Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: Implications for secondary organic aerosol formation,” Atmos. Chem. Phys. 12(14), 6593–6607 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    L. D. Ziemba, R. J. Griffi, S. Whitlow, and R. W. Talbot, “Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution,” Atmos. Environ. 45(39), 7310–7329. 2011.ADSCrossRefGoogle Scholar
  16. 16.
    Ch. Pöhlker, K. T. Wiedemann, B. Sinha, M. Shiraiwa, S. S. Gunthe, M. Smith, H. Su, P. Artaxo, Q. Chen, Y. Cheng, W. Elbert, M. K. Gilles, A. L. D. Kilcoyne, R. C. Moffet, M. Weigand, S. T. Martin, U. Pöschl, and M. O. Andreae, “Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon,” Science 337(6098), 1075–1078 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    V. F. McNeill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, M. I. Guzman, D. Heger, T. F. Kahan, P. Klan, S. Masclin, C. Toubin, and D. Voisin, “Organics in environmental ices: Sources, chemistry, and impacts,” Atmos. Chem. Phys. 12(20), 9653–9678 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    S. M. Burrows, C. Hoose, U. Poschl, and M. G. Lawrence, “Ice nuclei in marine air: Biogenic particles or dust?,” Atmos. Chem. Phys. 13(1), 245–267 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes, “Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets,” Atmos. Chem. Phys. 13(10), 5117–5135 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    D. Y. Lee and A. S. Wexler, “Atmospheric amines—Part III: Photochemistry and toxicity,” Atmos. Environ. 71, 95–103 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    J.-H. Park, A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger, “Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds,” Science 341(6146), 643–647 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    G. J. Doyle, “Self-nucleation in the sulfuric acid-water system,” J. Chem. Phys., No. 35, 795–799 (1961).Google Scholar
  23. 23.
    M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V. M. Kerminen, W. Birmili, and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: A review of observations,” J. Aerosol Sci. 35(2), 143–176 (2004).CrossRefGoogle Scholar
  24. 24.
    J. H. Kroll and J. H. Seinfeld, “Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere,” Atmos. Environ. 42(16), 3593–3624 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    A. Kiendler-Scharr, J. Wildt, M. Maso Dal, T. Hohaus, E. Kleist, T. F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, and A. Wahner, “New particle formation in forests inhibited by isoprene emissions,” Nature (Gr. Brit.) 461(7262), 381–383 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    J. R. Pierce, I. Riipinen, M. Kulmala, M. Ehn, T. Petäjä, H. Junninen, D. R. Worsnop, and N. M. Donahue, “Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events,” Atmos. Chem. Phys. 11(17), 9019–9036 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    I. K. Ortega, T. Suni, M. Boy, T. Gronholm, H. E. Manninen, T. Nieminen, M. Ehn, H. Junninen, H. Hakola, H. Hellen, T. Valmari, H. Arvela, S. Zegelin, D. Hughes, M. Kitchen, H. Cleugh, D. R. Worsnop, M. Kulmala, and V.-M. Kerminen, “New insights into nocturnal nucleation,” Atmos. Chem. Phys. 12(9), 4297–4312 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    S. Liu, D. A. Day, J. E. Shields, and L. M. Russell, “Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups,” Atmos. Chem. Phys. 11(16), 8321–8341 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    H. L. Wang, D. Huang, X. Zhang, Y. Zhao, and Z. M. Chen, “Understanding the aqueous phase ozonolysis of isoprene: Distinct product distribution and mechanism from the gas phase reaction,” Atmos. Chem. Phys. 12(15), 7187–7198 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    T. J. Barnum, N. Medeiros, and R. Z. Hinrichs, “Condensed-phase versus gas-phase ozonolysis of catechol: A combined experimental and theoretical study,” Atmos. Environ. 55(1), 98–106 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    A. Kiendler-Scharr, S. Andres, M. Bachner, K. Behnke, S. Broch, A. Hofzumahaus, F. Holland, E. Kleist, T. F. Mentel, F. Rubach, M. Springer, B. Steitz, R. Tillmann, A. Wahner, J.-P. Schnitzler, and J. Wildt, “Isoprene in poplar emissions: effects on new particle formation and OH concentrations,” Atmos. Chem. Phys. 12(2), 1021–1030 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    S. A. Epstein and S. A. Nizkorodov, “A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase,” Atmos. Chem. Phys. 12(17), 8205–8222 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    N. C. Eddingsaas, C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg, “α-pinene photooxidation under controlled chemical conditions. Part 2: SOA yield and composition in low- and high-NOx environments,” Atmos. Chem. Phys. 12(16), 7413–7427 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    A. W. Rollins, E. C. Browne, K.-E. Min, S. E. Pusede, P. J. Wooldridge, D. R. Gentner, A. H. Goldstein, S. Liu, D. A. Day, L. M. Russell, and R. C. Cohen, “Evidence for NOx control over nighttime SOA formation,” Science 337(6099), 1210–1212 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    Ch. Liu, B. Chu, Y. Liu, Q. Ma, J. Ma, H. He, J. Li, J. Hao, “Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-Pinene/NOx photooxidation,” Atmos. Environ. 77, 781–789 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    F. Riccobono, L. Rondo, M. Sipila, P. Barmet, J. Curtius, J. Dommen, M. Ehn, S. Ehrhart, M. Kulmala, A. Kurten, J. Mikkila, P. Paasonen, T. Petäjä, E. Weingartner, and U. Baltensperger, “Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth,” Atmos. Chem. Phys. 12(20), 9427–9439 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    I. Gensch, W. Laumer, O. Stein, B. Kammer, T. Hohaus, H. Saathoff, R. Wegener, A. Wahner, and A. Kiendler-Scharr, “Temperature dependence of the kinetic isotope effect in b-pinene ozonolysis,” J. Geophys. Res. 116, D20301 (2011). doi: 10.1029/2011JD016084ADSCrossRefGoogle Scholar
  38. 38.
    M. C. Day and S. N. Pandis, “Predicted changes in summertime organic aerosol concentrations due to increased temperatures,” Atmos. Environ. 45(36), 6546–6556 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    B. Chu, J. Hao, H. Takekawa, J. Li, K. Wang, J. Jiang, “The Remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx,” Atmos. Environ. 55(1), 26–34 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimiya, Leningrad, 1985) [in Russian].Google Scholar
  41. 41.
    O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, “Direct kinetic measurements of criegee intermediate (CH2OO) formed by reaction of CH2I with O2,” Science 335(6065), 204–207 (2012).ADSCrossRefGoogle Scholar
  42. 42.
    Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, “Infrared absorption spectrum of the simplest criegee intermediate CH2OO,” Science 340(6129), 174–176 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, “Direct measurements of conformer-dependent reactivity of the criegee intermediate CH3CHOO,” Science 340(6129), 177–180 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    C. D. Cappa, D. L. Che, S. H. Kessler, et al., “atVariations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation,” J. Geophys. Res. 116, D15203 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    M. Zhong and M. Jang, “Light absorption coefficient measurement of SOA using a UV-visible spectrometer connected with an integrating sphere,” Atmos. Environ. 45(25), 4263–4271 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimiya, Leningrad, 1985) [in Russian].Google Scholar
  47. 47.
    K. Ravindra, R. Sokhi, and R. Van Grieken, “atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation,” Atmos. Environ. 42(13), 2895–2921 (2008).ADSCrossRefGoogle Scholar
  48. 48.
    D. Fowler, K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Lajo, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Fle- chard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horvath, F. Loreto, U. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Bruggemann, S. Zechmeister-Boltenstern, J. Williams, C. O’ Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, and J. W. Erisman, “Atmospheric composition change: Ecosystems-atmosphere interactions,” Atmos. Environ. 43(33), 5193–5267 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “Tu-134 aicraft laboratory ‘Optik’,” Opt. Atmosf. Okeana 24(9), 805–816 (2011).Google Scholar
  50. 50.
    M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, “Interpretation of high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry data acquired from atmospheric organic aerosol samples,” Aerosol. Sci. Technol. 10(2), 408–420 (1989).CrossRefGoogle Scholar
  51. 51.
    W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants,” Environ. Sci. Technol. 27(13), 2700–2711 (1993).ADSCrossRefGoogle Scholar
  52. 52.
    W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 5. Natural gas home appliances,” Environ. Sci. Technol. 27(13), 2736–2744 (1993).ADSCrossRefGoogle Scholar
  53. 53.
    W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks,” Environ. Sci. Technol. 27(4), 636–651 (1993).ADSCrossRefGoogle Scholar
  54. 54.
    P. L. Hayes, A. M. Ortega, M. J. Cubison, K. D. Froyd, Y. Zhao, S. S. Cliff, W. W. Hu, D. W. Toohey, J. H. Flynn, B. L. Lefer, N. Grossberg, S. Alvarez, B. Rappengluck, J. W. Taylor, J. D. Allan, J. S. Holloway, J. B. Gilman, W. C. Kuster, J. A. de Gouw, P. Massoli, X. Zhang, J. Liu, R. J. Weber, A. L. Corrigan, L. M. Russell, G. Isaacman, D. R. Worton, N. M. Kreisberg, A. H. Goldstein, R. Thalman, E. M. Waxman, R. Volkamer, Y. H. Lin, J. D. Surratt, T. E. Kleindienst, J. H. Offenberg, S. Dusanter, S. Griffith, P. S. Stevens, J. Brioude, W. M. Angevine, and J. L. Jimenez, “Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign,” J. Geophys. Res. 118(16), 9233–9257 (2013).Google Scholar
  55. 55.
    M. Crippa, F. Canonaco, J. G. Slowik, I. El. Haddad, P. F. DeCarlo, C. Mohr, M. F. Heringa, R. Chirico, N. Marchand, B. Temime-Roussel, E. Abidi, L. Poulain, A. Wiedensohler, U. Baltensperger, and A. S. H. Prevot, “Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment,” Atmos. Chem. Phys. 13(16), 8411–8426 (2013).ADSCrossRefGoogle Scholar
  56. 56.
    L. D. Yee, J. S. Craven, C. L. Loza, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld, “Effect of chemical structure on secondary organic aerosol formation from C12 alkanes,” Atmos. Chem. Phys. 13(21), 11121–11140 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. G. Voronetskaya
    • 1
    Email author
  • G. S. Pevneva
    • 1
  • A. K. Golovko
    • 1
  • A. S. Kozlov
    • 2
  • M. Yu. Arshinov
    • 3
  • B. D. Belan
    • 3
  • D. V. Simonenkov
    • 3
  • G. N. Tolmachev
    • 3
  1. 1.Institute of Petroleum Chemistry, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations