Skip to main content

Corona discharge in atmospheric pressure air when using modulated voltage pulses

Abstract

Formation and decay of diffuse channels of a corona discharge in atmospheric pressure air when applying modulated voltage pulses to the electrode are studied. Photomultiplier tubes, a high-speed camera, and a CuBr vapor laser monitor are used to record the radiation from the corona discharge. It is shown that the radiation of diffuse corona discharge channels is time modulated, and the pulse repetition frequency is twice as high as the voltage pulse modulation frequency (∼ 290 kHz). It is also shown that the breakdowns can occur over a short distance when bending the corona discharge channel, which reduces the channel blurring.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. M. Bazelyan and Yu. P. Raizer, Lightning and Lightning Protection Physics (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  2. 2.

    Yu. P. Raizer, Gas Discharge Physics (Intellekt, Dolgoprudny, 2009) [in Russian].

    Google Scholar 

  3. 3.

    Yu. S. Akishev, M. E. Grushin, A. A. Deryugin, A. P. Napartovich, M. V. Pan’kin, and N. I. Trushkin, “Self-oscillations of a positive corona in nitrogen,” J. Phys., D 32, 2399–2409 (1999).

    ADS  Article  Google Scholar 

  4. 4.

    S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, “Peculiarities of the corona discharge in air,” Techn. Phys. 78(7), 848–852 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    A. V. Kozyrev, V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, “Soft X-ray generation and its role in breakdown of air gap at elevated pressures,” Techn. Phys. Lett. 37(11), 1054–1057 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    T. Shao, V. F. Tarasenko, C. Zhang, I. D. Kostyrya, H. Jiang, R. Xu, D. V. Rybka, and P. Yan, “Generation of runaway electrons and X-rays in repetitive nanosecond pulse corona discharge in atmospheric pressure air,” Appl. Phys. Express 4(3), 066001 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, D. V. Rybka, V. F. Tarasenko, and D. V. Shitts, “Radiation of diffuse corona discharge in atmospheric pressure air,” Opt. Atmosf. Okeana 24(11), 1009–1017 (2011).

    Google Scholar 

  8. 8.

    T. Shao, V. F. Tarasenko, C. Zhang, D. V. Rybka, I. D. Kostyrya, A. V. Kozyrev, P. Yan, and V. Yu. Kozhevnikov, “Runaway electrons and X-rays from a corona discharge in atmospheric pressure air,” New J. Phys. 13(20), 113305 (2011).

    Google Scholar 

  9. 9.

    V. F. Tarasenko, I. D. Kostyrya, and D. V. Rybka, “Breakdown in atmospheric pressure air at nanosecond voltage pulses due to runaway electrons,” Opt. Atmosf. Okeana 25(1), 103–108 (2012).

    Google Scholar 

  10. 10.

    D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric air pressure at modulated voltage 10-ms pulse,” Opt. Atmosf. Okeana 26(1), 85–90 (2013).

    Google Scholar 

  11. 11.

    R. Thyen, A. Weber, and C.-P. Klages, “Plasmaenhanced chemical-vapour-deposition of thin films by corona discharge at atmospheric pressure,” Surf. Coat. Technol. 97(1–3), 426–434 (1997).

    Article  Google Scholar 

  12. 12.

    M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, “VUF emission of binary Ar and He mixtures with Xe during nanosecond diffuse discharge in a inhomogeneous electric field,” Opt. Atmosf. Ocean. 25(3), 226–229 (2012).

    Google Scholar 

  13. 13.

    A. N. Panchenko, N. A. Panchenko, M. I. Lomaev, and V. F. Tarasenko, “UV, visible, and IR lasers pumped by the diffuse discharge formed by run-away electrons,” Opt. Atmosf. Oceana 26(10), 1–5 (2013).

    Google Scholar 

  14. 14.

    M. V. Trigub, G. S. Evtushenko, F. A. Gubarev, and S. N. Torgaev, “A laser monitor capable of frame-by-frame image recording,” Control. Diagnostics, spec. issue, 140–143 (2011).

    Google Scholar 

  15. 15.

    I. V. Krasnikov, M. V. Trigub, and G. S. Evtushenko, “CuBr laser pumping source with pulse charged working capacity,” Vestnik Nauki Sibiri, No. 5(6), 54–58 (2012).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © D.V. Rybka, M.V. Trigub, D.A. Sorokin, G.S. Evtushenko, V.F. Tarasenko, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rybka, D.V., Trigub, M.V., Sorokin, D.A. et al. Corona discharge in atmospheric pressure air when using modulated voltage pulses. Atmos Ocean Opt 27, 582–586 (2014). https://doi.org/10.1134/S1024856014060153

Download citation

Keywords

  • corona discharge in atmospheric pressure air
  • formation and decay of channels
  • optical radiation