Skip to main content
Log in

Study of liquid water in clouds with the “Microradkom” radiometric system

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of the study of liquid water in thin clouds and mist with the multichannel microwave radiometric system “Microradkom” are presented in the paper. The system includes four microwave radiometers: multichannel with frequencies of 53–58 GHz (temperature profiling in troposphere); one-channel scanning with a frequency of 56.6 GHz (profiling of atmospheric boundary layer temperature); one-channel radiometer with a frequency of 22.235 GHz (reduced sensitivity of 0.04 K for measurements of the integral water vapor); one-channel radiometer with a frequency of 37.5 GHz (reduced sensitivity of 0.02 K for measurements of the integral liquid water), and automated meteorological station and video system for cloud observations. Measurements were conducted in Dolgoprudny, Moscow oblast, from February, 2012, to January, 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Borovikov, “Physics of clouds,” Proc. CAO, No. 90, 41–49 (1969).

    Google Scholar 

  2. Clouds and Cloudy Atmosphere, Ed. by I. P. Mazin and A. Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  3. Russian Hydrometeorological Encyclopedic Dictionary, Ed. by A.I. Bedritsky (Letnii Cad, St. Petersburg, 2008), Vol. 1 [in Russian].

    Google Scholar 

  4. E. N. Kadygrov, A. G. Gorelik, E. A. Miller, V. V. Nekrasov, A. V. Troitskii, T. A. Tochilkina, and A. N. Shaposhnikov, “Results of tropospheric thermodynamics monitoring on the base of multichannel microwave system data,” Opt. Atmosf. Okeana 26(6), 459–465 (2013).

    Google Scholar 

  5. E. N. Kadygrov, A. G. Gorelik, A. K. Knyazev, E. A. Miller, and T. A. Tochilkina, “Results of the experimental study of liquid water in winter clouds,” in Proc. XX Workshop “Sierian Aerosols” (Publishin House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  6. A. E. Basharinov, A. S. Gurvich, and S. T. Egorov, Radio Radiation of Earth as a Planet (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  7. S. A. Zhevakin, “Passive-radar determination of the integral humidity of a cloudy atmosphere and of the integral water content, temperature, and height of the drop phase of clouds,” Radiophys. Quantum Electron. 21(8), 786–792 (1978).

    Article  ADS  Google Scholar 

  8. V. D. Stepanenko, G. G. Shchukin, L. P. Bobylev, and S. Yu. Matrosov, Radio Heat Location (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  9. D. M. Karavaev and G. G. Shchukin, “MW radiometry in diagnostic of the liquid drop water content of clouds,” in Proc. NITsDZA. Prikladnaya Meteorologiya, No. 5 (553), 99–120 (2004).

    Google Scholar 

  10. A. G. Gorelik, V. V. Kalashnikov, L. S. Raikova, and Yu. A. Frolov, “Radio heat measurements of the air moisture and the integral water content of clouds,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 5, 928–936 (1973).

    Google Scholar 

  11. V. A. Rassadovskii and A. V. Troitskii, “Radiometry study of the water content and liquid drop phase of a cloudy atmosphere,” Proc. 5th All-Union Workshop on Radiometeorology (Gidrometeoizdat, Moscow, 1981), pp. 173–176 [in Russian].

    Google Scholar 

  12. A. E. Basharinov and B. G. Kutuza, “Study of radio radiation and absorption by a cloudy atmosphere in the millimeter and centimeter wavelength ranges,” in Proc. GGO (Gidrometeoizdat, Leningrad, 1968), Is. 222, pp. 100–110 [in Russian].

    Google Scholar 

  13. E. R. Westwater, “The accuracy of water vapor and cloud liquid determination by dual frequency ground-based radiometry,” Radio Sci., No. 4, 667–685 (1978).

    Google Scholar 

  14. R. Peter and N. Kampfer, “Radiometric determination of water vapor and liquid water and its validation with other techniques,” J. Geophys. Res., D 18(97(16)), 173–183 (1992).

    Google Scholar 

  15. C. Matzler and J. Morland, Advances in Surface-Based Radiometry of Atmospheric Water. IAP Research Report, 2008. 2008-02-MW (University of Bern, Bern, 2008).

    Google Scholar 

  16. V. D. Burlakov, S. I. Dolgii, A. P. Makeev, G. G. Matvienko, A. V. Nevzorov, A. N. Soldatov, O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, “Lidar technologies for remote sensing of atmospheric parameters,” Opt. Atmosf. Okean. 26(10), 829–837 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kadygrov.

Additional information

Original Russian Text © E.N. Kadygrov, A.G. Gorelik, T.A. Tochilkina, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadygrov, E.N., Gorelik, A.G. & Tochilkina, T.A. Study of liquid water in clouds with the “Microradkom” radiometric system. Atmos Ocean Opt 27, 596–604 (2014). https://doi.org/10.1134/S1024856014060074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014060074

Keywords

Navigation