Atmospheric and Oceanic Optics

, Volume 27, Issue 6, pp 596–604 | Cite as

Study of liquid water in clouds with the “Microradkom” radiometric system

  • E. N. KadygrovEmail author
  • A. G. Gorelik
  • T. A. Tochilkina
Optical Instrumentation


Results of the study of liquid water in thin clouds and mist with the multichannel microwave radiometric system “Microradkom” are presented in the paper. The system includes four microwave radiometers: multichannel with frequencies of 53–58 GHz (temperature profiling in troposphere); one-channel scanning with a frequency of 56.6 GHz (profiling of atmospheric boundary layer temperature); one-channel radiometer with a frequency of 22.235 GHz (reduced sensitivity of 0.04 K for measurements of the integral water vapor); one-channel radiometer with a frequency of 37.5 GHz (reduced sensitivity of 0.02 K for measurements of the integral liquid water), and automated meteorological station and video system for cloud observations. Measurements were conducted in Dolgoprudny, Moscow oblast, from February, 2012, to January, 2014.


cloud physics microwave remote sensing integral water vapor liquid water in clouds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Borovikov, “Physics of clouds,” Proc. CAO, No. 90, 41–49 (1969).Google Scholar
  2. 2.
    Clouds and Cloudy Atmosphere, Ed. by I. P. Mazin and A. Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  3. 3.
    Russian Hydrometeorological Encyclopedic Dictionary, Ed. by A.I. Bedritsky (Letnii Cad, St. Petersburg, 2008), Vol. 1 [in Russian].Google Scholar
  4. 4.
    E. N. Kadygrov, A. G. Gorelik, E. A. Miller, V. V. Nekrasov, A. V. Troitskii, T. A. Tochilkina, and A. N. Shaposhnikov, “Results of tropospheric thermodynamics monitoring on the base of multichannel microwave system data,” Opt. Atmosf. Okeana 26(6), 459–465 (2013).Google Scholar
  5. 5.
    E. N. Kadygrov, A. G. Gorelik, A. K. Knyazev, E. A. Miller, and T. A. Tochilkina, “Results of the experimental study of liquid water in winter clouds,” in Proc. XX Workshop “Sierian Aerosols” (Publishin House of IAO SB RAS, Tomsk, 2013) [in Russian].Google Scholar
  6. 6.
    A. E. Basharinov, A. S. Gurvich, and S. T. Egorov, Radio Radiation of Earth as a Planet (Nauka, Moscow, 1974) [in Russian].Google Scholar
  7. 7.
    S. A. Zhevakin, “Passive-radar determination of the integral humidity of a cloudy atmosphere and of the integral water content, temperature, and height of the drop phase of clouds,” Radiophys. Quantum Electron. 21(8), 786–792 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    V. D. Stepanenko, G. G. Shchukin, L. P. Bobylev, and S. Yu. Matrosov, Radio Heat Location (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  9. 9.
    D. M. Karavaev and G. G. Shchukin, “MW radiometry in diagnostic of the liquid drop water content of clouds,” in Proc. NITsDZA. Prikladnaya Meteorologiya, No. 5 (553), 99–120 (2004).Google Scholar
  10. 10.
    A. G. Gorelik, V. V. Kalashnikov, L. S. Raikova, and Yu. A. Frolov, “Radio heat measurements of the air moisture and the integral water content of clouds,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 5, 928–936 (1973).Google Scholar
  11. 11.
    V. A. Rassadovskii and A. V. Troitskii, “Radiometry study of the water content and liquid drop phase of a cloudy atmosphere,” Proc. 5th All-Union Workshop on Radiometeorology (Gidrometeoizdat, Moscow, 1981), pp. 173–176 [in Russian].Google Scholar
  12. 12.
    A. E. Basharinov and B. G. Kutuza, “Study of radio radiation and absorption by a cloudy atmosphere in the millimeter and centimeter wavelength ranges,” in Proc. GGO (Gidrometeoizdat, Leningrad, 1968), Is. 222, pp. 100–110 [in Russian].Google Scholar
  13. 13.
    E. R. Westwater, “The accuracy of water vapor and cloud liquid determination by dual frequency ground-based radiometry,” Radio Sci., No. 4, 667–685 (1978).Google Scholar
  14. 14.
    R. Peter and N. Kampfer, “Radiometric determination of water vapor and liquid water and its validation with other techniques,” J. Geophys. Res., D 18(97(16)), 173–183 (1992).Google Scholar
  15. 15.
    C. Matzler and J. Morland, Advances in Surface-Based Radiometry of Atmospheric Water. IAP Research Report, 2008. 2008-02-MW (University of Bern, Bern, 2008).Google Scholar
  16. 16.
    V. D. Burlakov, S. I. Dolgii, A. P. Makeev, G. G. Matvienko, A. V. Nevzorov, A. N. Soldatov, O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, “Lidar technologies for remote sensing of atmospheric parameters,” Opt. Atmosf. Okean. 26(10), 829–837 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. N. Kadygrov
    • 1
    Email author
  • A. G. Gorelik
    • 1
  • T. A. Tochilkina
    • 1
  1. 1.Central Aerological ObservatoryDolgoprudnyRussia

Personalised recommendations