Advertisement

Atmospheric and Oceanic Optics

, Volume 27, Issue 5, pp 403–411 | Cite as

Estimate of the effects of Pinatubo eruption in stratospheric O3 and NO2 contents taking into account the variations in the solar activity

  • A. N. GruzdevEmail author
Atmospheric Radiation, Optical Weather, and Climate

Abstract

The SBUV and SBUV-2 satellite observations and ground-based measurements of the total NO2 at the NDACC network are used to estimate the effects of the eruption of the Pinatubo volcano and variations in the level of solar activity on the stratospheric O3 and NO2. The NO2 decrease due to the Pinatubo eruption had been from 19 to 34% at different stations, with the NO2 content, on the whole, found to decrease somewhat more strongly in the Southern Hemisphere (SH) than in the Northern Hemisphere (NH). On the contrary, the O3 concentration decreased much more strongly in the lower stratosphere at HN extratropical latitudes (∼10%) than in the SH. The maximal percentage decrease in ozone concentration (by ∼22%) is found around the 10-hPa (32-km) level at 10–15° S. In general traits, the effect of the 11-year solar cycle on the stratospheric ozone is symmetrical about the equator. The altitudinal maxima of the O3 response to the solar cycle are identified at heights of 50–55, 35–40, and below 25 km. Changes in O3 concentration in these layers are usually within a few percent. Substantial interhemispheric differences are found in the NO2 response to the 11-year solar cycle. At most of the SH stations, the NO2 content in the phase of maximum of solar activity is usually smaller than in the phase of minimum. The NO2 content at NH low and middle latitudes is, more often, larger during the maximum than the minimum of solar activity. The NO2 variations during the solar activity cycle are usually within 5%.

Keywords

ozone NO2 Pinatubo volcano solar activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Robock, “Volcanic eruptions and climate,” Rev. Geophys. 38(2), 191–219 (2000).CrossRefADSGoogle Scholar
  2. 2.
    P. V. Johnston, R. L. McKenzie, J. G. Keys, and W. A. Matthew, “Observations of depleted stratospheric NO2 following the Pinatubo volcanic eruption,” Geophys. Rev. Lett. 19(2), 211–213 (1992).CrossRefADSGoogle Scholar
  3. 3.
    S. Chandra, “Changes in stratospheric ozone and temperature due to the eruption of Mt. Pinatubo,” Geophys. Rev. Lett. 20(1), 33–36 (1993).CrossRefADSGoogle Scholar
  4. 4.
    D. J. Hofmann, S. J. Oltmans, W. D. Komhyr, J. M. Harris, J. A. Lathrop, A. O. Langford, T. Deshler, B. J. Johnson, A. Torress, and W. A. Matthews, “Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol,” Geophys. Rev. Lett. 21(1), 65–68 (1994).CrossRefADSGoogle Scholar
  5. 5.
    W. B. Grant, E. V. Browell, J. Fishman, V. J. Brackett, R. E. Veiga, D. Nganga, A. Minga, B. Cros, C. F. Butler, M. A. Fenn, C. S. Long, and L. L. Stowe, “Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo,” J. Geophys. Res., D 99(4), 8197–8211 (1994).CrossRefADSGoogle Scholar
  6. 6.
    C. P. Rinsland, M. R. Gunson, M. C. Abrams, L. L. Lowes, R. Zander, E. Mahieu, A. Goldman, M. K. W. Ko, J. M. Rodriguez, and N. D. Sze, “Heterogeneous conversion of N2O to HNO3 in the post-Mount Pinatubo eruption stratosphere,” J. Geophys. Res., D 99(4), 8213–8219 (1994).CrossRefADSGoogle Scholar
  7. 7.
    S. Solomon, R. W. Sanders, R. O. Jakoubek, K. H. Arpag, S. L. Stephens, J. G. Keys, and R. R. Garcia, “Visible and near-Ultraviolet spectroscopy at McMurdo station, Antarctica. 10. Reductions of stratospheric NO2 due to Pinatubo aerosols 1994,” J. Geophys. Res., D 99(2), 3509–3516 (1994).CrossRefADSGoogle Scholar
  8. 8.
    A. S. Elokhov and A. N. Gruzdev, “Estimation of tropospheric and stratospheric NO2 from spectrometric measurements of column NO2 abundances,” Proc. SPIE-Int. Soc. Opt. Eng. 2506, 444–454 (1995).ADSGoogle Scholar
  9. 9.
    A. Di Sarra, M. Cacciani, G. Fiocco, D. Fua, T. S. Jorgensen, B. Knudsen, N. Larsen, and I. S. Mikkelsen, “Ozone and aerosol correlated observations at Thule, Greenland, in the period 1991–1994,” J. Geophys. Res., D 100(12), 25965–25977 (1995).CrossRefGoogle Scholar
  10. 10.
    A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Gorsdorf, H.-D. Dier, and I. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: Observations over Central Europe,” J. Geophys. Res., D 101(13), 18775–18785 (1996).CrossRefADSGoogle Scholar
  11. 11.
    L. J. Mickley, J. P. D. Abbatt, J. E. Frederik, and J. M. Russell, III, “Response of summertime odd nitrogen and ozone at 17 Mbar to Mount Pinatubo aerosol over the southern midlatitudes: Observations from the halogen occultation experiment,” J. Geophys. Res., D 102(19), 23573–23582 (1997).CrossRefADSGoogle Scholar
  12. 12.
    M. Van Roozendael, M. De Maziere, C. Hermans, P. C. Simon, J.-P. Pommereau, F. Goutail, X. X. Tie, G. Brasseur, and C. Granier, “Ground-based observations of stratospheric NO2 at high and midlatitudes in Europe after the Mount Pinatubo eruption,” J. Geophys. Res., D 102(15), 19171–19176 (1997).CrossRefGoogle Scholar
  13. 13.
    J. K. Angell, “Impact of El Chichon and Pinatubo on ozonesonde profiles in north extratropics,” Geophys. Rev. Lett. 25(24), 4485–4488 (1998).CrossRefADSGoogle Scholar
  14. 14.
    M. De Maziere, M. Van Roozendael, C. Hermans, P. C. Simon, P. Demoulin, G. Roland, and R. Zander, “Quantitative evaluation of the post-Mount Pinatubo NO2 reduction and recovery, based on 10 years of Fourier transform Infrared and UV-visible spectroscopic measurements at Jungfraujoch,” J. Geophys. Res., D 103(9), 10849–10858 (1998).CrossRefGoogle Scholar
  15. 15.
    J. B. Liley, P. V. Johnston, R. L. McKenzie, A. J. Thomas, and I. S. Boyd, “Stratospheric NO2 variations from a long time series at Lauder, New Zealand,” J. Geophys. Res., D 105(9), 11633–11640 (2000).CrossRefADSGoogle Scholar
  16. 16.
    A. N. Gruzdev, “Latitudinal dependence of variations in stratospheric NO2 content,” Izv. Atmos. Ocean. Phys. 44(3), 319–333 (2008).CrossRefGoogle Scholar
  17. 17.
    A. N. Gruzdev, “Latitudinal structure of variations and trends in stratospheric NO2,” Int. J. Remote Sens. 30(15–16), 4227–4246 (2009).CrossRefADSGoogle Scholar
  18. 18.
    M. Koike, N. B. Jones, W. A. Matthews, P. V. Johnston, R. L. McKenzie, D. Kinnison, and J. Rodriguez, “Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3,” Geophys. Rev. Lett. 21(7), 597–600 (1994).CrossRefADSGoogle Scholar
  19. 19.
    X. X. Tie and G. Brasseur, “The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading,” Geophys. Res. Lett. 22(22), 3035–3038 (1995).CrossRefADSGoogle Scholar
  20. 20.
    A. N. Gruzdev, “Estimate of the effect of 11-year solar cycle on stratospheric ozone,” Geomag. Aeronom. (in press).Google Scholar
  21. 21.
    A. S. Elokhov and A. N. Gruzdev, “Nitrogen dioxide column content and vertical profile measurements at the Zvenigorod research station,” Izv. Atmos. Ocean. Phys. 36(6), 763–777 (2000).Google Scholar
  22. 22.
    A. N. Gruzdev and A. S. Elokhov, “Variability of stratospheric and tropospheric nitrogen dioxide observed by visible spectrophotometer at Zvenigorod, Russia,” Int. J. Remote Sens. 32(11), 3115–3127 (2011).CrossRefADSGoogle Scholar
  23. 23.
    L. W. Thomason, L. R. Poole, and T. Deshler, “A global climatology of stratospheric aerosol surface area density deduced from stratospheric aerosol and gas experiment II measurements: 1984–1994,” J. Geophys. Res., D 102(7), 8967–8976 (1997).CrossRefADSGoogle Scholar
  24. 24.
    J. J. Bauman, P. B. Russell, M. A. Geller, and P. Hamill, “A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparison, 1984–1999,” J. Geophys. Res., D 108(13), 4383, (2003). doi: 10.1029/2002JD002993CrossRefADSGoogle Scholar
  25. 25.
    V. Aquila, D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman, “The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes,” J. Atmos. Sci. 70(3), 894–900 (2013).CrossRefADSGoogle Scholar
  26. 26.
    W. J. Randel, F. Wu, J. M. III. Russell, J. W. Waters, and L. Froidevaux, “Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo,” J. Geophys. Res., D 100(8), 16753–16764 (1995).CrossRefADSGoogle Scholar
  27. 27.
    C. S. Poberaj, J. Staehelin, and D. Brunner, “Missing stratospheric ozone decrease at southern hemisphere,” J. Atmos. Sci. 68(9), 1922–1945 (2011).CrossRefADSGoogle Scholar
  28. 28.
    G. Beig, N. Saraf, and S. K. Peshin, “Evidence of the Pinatubo volcanic eruption on the distribution of ozone over the tropical Indian region,” J. Geophys. Res., D 107(23), 4674 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.A.M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations