Advertisement

Atmospheric and Oceanic Optics

, Volume 27, Issue 5, pp 412–416 | Cite as

Certain features of gas emission from the wood of annual rings of conifers

  • B. G. Ageev
  • V. A. SapozhnikovaEmail author
Atmospheric Radiation, Optical Weather, and Climate

Abstract

Results of our studies of gas content in rings of tree discs have shown that a significant part of the CO2 generated by cell respiration remains in tree stems. The content of this CO2 exceeds the atmospheric CO2 in most cases and forms the distribution over tree rings. In our investigations, we first used photoacoustic gas analysis. In this work, we discuss certain features of the chronologies (year-to-year distribution) of gas samples.

Keywords

annual rings carbon dioxide annual distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. G. Ageev, A. P. Zotikova, N. L. Padalko, Yu. N. Ponomarev, D. A. Savchuk, V. A. Sapozhnikova, and E. V. Chernikov, “Variation of H2O, CO2, and CO2 isotope composition in tree rings of Siberian stone pine,” Atmos. Ocean. Opt. 24(4), 390–395 (2011).CrossRefGoogle Scholar
  2. 2.
    B. G. Ageev, Yu. N. Ponomarev, and V. A. Sapozhnikova, “Laser photoacoustic method for disc tree-ring gas analysis,” World Environ. 2(2), 4–10 (2012).CrossRefGoogle Scholar
  3. 3.
    B. G. Ageev, A. N. Gruzdev, G. V. Matyashenko, D. A. Savchuk, V. A. Sapozhnikova, and Yu. N. Pono- marev, “Variations and trends in CO2 and H2O content in coniferous tree-rings,” Atmos. Ocean. Opt. 26(3), 245–251 (2012).CrossRefGoogle Scholar
  4. 4.
    B. G. Ageev, V. D. Nesvetailo, Yu. N. Ponomarev, and V. A. Sapozhnikova, “Measurements of CO2 emission by tree rings,” Atmos. Ocean. Opt. 15(9), 692–693 (2002).Google Scholar
  5. 5.
    V. V. Zuev, A. A. Mitsel’, M. Yu. Kataev, I. V. Ptashnik, and K. M. Firsov, “Simulation of gas analysis of the atmosphere by long path method: Computer code LPM,” Comput. Phys. 9(6), 649–656 (1995).CrossRefADSGoogle Scholar
  6. 6.
    P. D. Kramer and T. T. Kozlovskii, Physiology of Woody Plants (Lesnaya promyshlennost’, Moscow, 1983) [in Russian].Google Scholar
  7. 7.
    T. D. Sharkey, A. E. Wiberley, and A. R. Donohue, “Isoprene emission from plants: Why and how,” Ann. Botany 101 (2008).Google Scholar
  8. 8.
    A. Miklos, D. Bicanic, and J. de Bont, “On the CO laser photoacoustic absorption spectrum of isoprene—a reactive biogenic forest emitant,” Infrared Phys. 34(6), 635–640 (1993).CrossRefADSGoogle Scholar
  9. 9.
    H. Dahnke, J. Kahl, G. Schuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys., B 70(2), 275–280 (2000).CrossRefADSGoogle Scholar
  10. 10.
    B. Schrader, Raman-, Infrared Atlas of Organic Compounds, 2nd ed. (VCH-Verl.-Ges., Weinheim, 1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations