Skip to main content
Log in

Remote measurements of concentration of organic solvents in binary mixtures using Raman spectroscopy

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Binary mixtures of methanol, ethanol, isoamyl alcohol, and acetic acid with water in various ratios have been studied using Raman spectroscopy. Upon variations in organic solvent concentration, the intensities of stretching vibration bands of CH and OH group change within the spectral range 2600–3800 cm−1. For quantitative characterization of the partial concentrations of a solvent, we have chosen the integral intensity I CH of CH group stretching vibrations normalized to the total intensity of bands of CH and OH groups (I CH + I OH) within the 2600–3800 cm−1 range. With this normalization, the intensity I CH/(I CH + I OH) linearly depends on the volume fraction of the organic solvent throughout the whole range of its concentrations for the spectra of all mixtures. This allows noncontact measurements of concentrations of organic solvents in water solutions, including flammable or toxic ones. The relative concentration accuracy is 0.5, 1.1, and 1.5% for aqueous ethanol, methanol, and acetic acid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Bunte, W. Schweikert, J. Deimling, F. Schnurer, and H. Krause, “Detection of liquid explosives and/or flammable liquids by different techniques, detection of liquid explosives and flammable agents in connection with terrorism,” NATO Science for Peace and Security, Series B, Physics and Biophysics, 179–188 (2008).

    Google Scholar 

  2. M. Stancl and M. Kyncl, “Some detection procedures for liquid explosives, detection of liquid explosives and flammable agents in connection with terrorism,” NATO Science for Peace and Security, Series B, Physics and Biophysics, 79–96 (2008).

    Google Scholar 

  3. S. Wallin, A. Pettersson, H. Stmark, and A. Hobro, “Laser-based standoff detection of explosives: A critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).

    Article  Google Scholar 

  4. M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sens. 9(12), 10447–10512 (2009).

    Article  Google Scholar 

  5. G. V. Sakovich, A. I. Chernov, S. V. Silant’ev, A. B. Vorozhtsov, A. A. Pavlenko, E. V. Maksimenko, M. M. Makogon, A. V. Klimkin, K. Yu. Osipov, Yu. N. Ponomarev, V. A. Kapitanov, and B. G. Ageev, “A prototype of an explosive detector on the basis of isotope CO2 laser,” Polzunovskii Vestnik, No. 4, 38–46 (2010).

    Google Scholar 

  6. R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by Laser Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy at stand-off distances,” Spectrochim. Acta, A 61(10), 2324–2334 (2005).

    Article  ADS  Google Scholar 

  7. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: A review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).

    Article  Google Scholar 

  8. M. E. Jacox, “Matrix isolation study of the infrared spectrum and structure of the CH3 free radical,” J. Mol. Spectrosc. 66(2), 272–287 (1977).

    Article  ADS  Google Scholar 

  9. E. Rytter and D. M. Gruen, “Infrared spectra of matrix isolated and solid ethylene. Formation of ethylene dimmers,” Spectrochim. Acta, A 35(3), 199–207 (1979).

    Article  ADS  Google Scholar 

  10. S. E. Boganov, S. V. Kudryashov, A. Yu. Ryabov, V. M. Klimkin, A. V. Klimkin, M. P. Egorov, and O. M. Nefedov, “Matrix IR spectroscopy study of methane and cyclohexane transformation in glow and spark discharges,” Izv. Tomskogo Politekhn. Universiteta 312(2), 143–148 (2008).

    Google Scholar 

  11. S. E. Boganov, S. V. Kudryashov, A. Yu. Ryabov, A. V. Klimkin, M. P. Egorov, and O. M. Nefedov, “The spectroscopic study of methane and cyclohexane transformation products in a glow discharge,” Atmos. Ocean. Opt. 21(8), 640–644 (2008).

    Google Scholar 

  12. M. L. Ramirez, W. Ortiz, L. C. Pacheco-Londono, and S. P. Hernandez-Rivera, “Remote detection of hazardous liquids concealed in glass and plastic containers,” IEEE J. Sens. 10(3), 693–698 (2010).

    Article  Google Scholar 

  13. N. A. Marley, C. K. Mann, and T. J. Vickers, “Raman spectroscopy in trace analysis for phenols in water,” Appl. Spectrosc. 39(4), 628–633 (1985).

    Article  ADS  Google Scholar 

  14. K. Tanabe and J. Hiraisha, “Vibrational frequencies and line-widths of C-H stretching Raman bands of organic molecules in aqueous solution,” Chem. Phys. Lett. 71(3), 460–462 (1980).

    ADS  Google Scholar 

  15. C. A. Holden, S. S. Hunnicutt, R. Sanchez-Ponce, J. M. Craig, and S. C. Rutan, “Study of complexation in methanol/water mixtures by infrared and Raman spectroscopy and multivariate curve resolution-alternating least squares analysis,” Appl. Spectrosc. 57(5), 483–490 (2003).

    Article  ADS  Google Scholar 

  16. S. Dixit, W. C. K. Poon, and J. Crain, “Hydration of methanol in aqueous solutions: a Raman spectroscopic study,” J. Phys.: Condens. Matter. 12(21), L323–L328 (2000).

    ADS  Google Scholar 

  17. C. L. Sanford, B. A. Mantooth, and B. T. Jones, “Determination of ethanol in alcohol samples using a modular Raman spectrometer,” J. Chem. Educ. 78(9), 1221–1225 (2001).

    Article  Google Scholar 

  18. D. Cleveland, M. Carlson, E. D. Hudspeth, L. E. Quat- trochi, K. L. Batchler, S. A. Balram, S. Hong, and R. G. Michel, “Raman spectroscopy for the undergraduate teaching laboratory: Quantification of ethanol concentration in consumer alcoholic beverages and qualitative identification of marine diesels using a miniature Raman spectrometer,” Spectrosc. Lett. 40(6) 903–924 (2007).

    Article  ADS  Google Scholar 

  19. S. A. Burikov, T. A. Dolenko, S. V. Patsaeva, and V. I. Yuzhakov, “Diagnostics of aqueous ethanol solutions using Raman spectroscopy,” Opt. Atmosf. Okeana 22(11), 1082–1088 (2009).

    Google Scholar 

  20. S. Burikov, T. Dolenko, S. Patsaeva, Yu. Starokurov, and V. Yuzhakov, “Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems,” Mol. Phys. 108(18), 2427–2436 (2010).

    Article  ADS  Google Scholar 

  21. S. A. Burikov, T. A. Dolenko, S. V. Patsaeva, and V. I. Yuzhakov, “Lazer analyzer of liquids with complex software,” Water: Chem. Ecol., No. 1, 31–37 (2010).

    Google Scholar 

  22. T. A. Dolenko, S. A. Burikov, S. V. Patsaeva, and V. I. Yuzhakov, “Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra,” Quantum Elektron. 41(3), 267–272 (2011).

    Article  ADS  Google Scholar 

  23. S. A. Dolenko, S. A. Burikov, T. A. Dolenko, and I. G. Persiantsev, “Adaptive methods for solving inverse problems in laser Raman spectroscopy of multi-component solutions,” Pattern Recogn. Image Anal. 22(4), 551–558 (2012).

    Article  Google Scholar 

  24. S. A. Burikov, S. A. Dolenko, T. A. Dolenko, and I. G. Persiantsev, “Application of artificial neural networks to solve problems of identification and determination of concentration of salts in multi-component water solutions by Raman spectra,” Opt. Mem. Neural Networks (Inform. Opt.) 19(2), 140–148 (2010).

    Article  Google Scholar 

  25. S. Burikov, S. Dolenko, T. Dolenko, S. Patsaeva, and V. Yuzhakov, “Decomposition of water Raman stretching band with a combination of optimization methods,” Mol. Phys. 108(6), 739–747 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Dolenko.

Additional information

Original Russian Text © S.V. Patsaeva, T.A. Dolenko, S.A. Burikov, V.I. Yuzhakov, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patsaeva, S.V., Dolenko, T.A., Burikov, S.A. et al. Remote measurements of concentration of organic solvents in binary mixtures using Raman spectroscopy. Atmos Ocean Opt 27, 291–296 (2014). https://doi.org/10.1134/S1024856014040125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014040125

Keywords

Navigation