Skip to main content

Influence of the gas mixture composition on pumping energy dissipation in a XeF(C-A) amplifier of the hybrid femtosecond laser system THL-100

Abstract

The influence of the composition of a gas mixture in a XeF(C-A) amplifier of the THL-100 hybrid femtosecond laser system on the main channels of energy loss is studied via numerical simulation. It is shown that an increase in the N2 buffer gas pressure from 100 to 760 Torr increases the fraction of absorbed energy transferred to the upper laser level XeF(C,ν = 0), while an increase in the XeF2 partial pressure increases energy loss in collision quenching of the XeF(B, C) states and reduces the energy transferred to the XeF(C,ν = 0) state.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24(3), 160–162 (1999).

    Article  ADS  Google Scholar 

  2. 2.

    M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0:85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003).

    Article  ADS  Google Scholar 

  3. 3.

    Tae Jun Yu, Seong Ku Lee, Jae Hee Sung, Jin Woo Yoon, Tae Moon Jeong, and Jongmin Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirp-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10814 (2012).

    Article  ADS  Google Scholar 

  4. 4.

    V. Tcheremiskine, O. Uteza, V. Mislavskii, M. Sentis, and L. Mikheev, “Amplification of femtosecond optical pulses in a photolytically driven XeF(C-A) laser amplifier,” Proc. SPIE 6346, 634613 (2007). doi 10.1117/12.738132

    Article  Google Scholar 

  5. 5.

    A. I. Aristov, Ya. V. Grudtsyn, I. G. Zubarev, N. G. Ivanov, O. N. Krokhin, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. A. Rastvortseva, N. A. Ratakhin, M. L. Sentis, A. N. Starodub, O. Ulteza, V. I. Cheremiskin, and V. I. Yalovoi, “Hybrid femtosecond laser system based on photochemical XeF(C-A) amplifier with an aperture of 12 cm,” Opt. Atmosf. Okeana 22(11), 1029–1034 (2009).

    Google Scholar 

  6. 6.

    S. V. Alekseev, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, N. A. Ratakhin, and A. G. Yastrem- skii, “Hybrid femtosecond laser system THL-100 on the base of XeF(C-A) amplifier,” Opt. Atmosf. Okeana 25(3), 221–225 (2012).

    Google Scholar 

  7. 7.

    S. V. Alekseev, A. I. Aristov, N. G. Ivanov, B. M. Koval- chuk, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, and N. A. Ratakhin, “Multiterawatt femtosecond laser system in the visible with photochemically driven XeF(C-A) boosting amplifier,” Las. Part. Beams 31(1), 17–21 (2013).

    Article  ADS  Google Scholar 

  8. 8.

    L. D. Mikheev, D. B. Stavrovskii, and V. S. Zuev, “Photodissociation XeF laser operating in the visible and UV regions,” J. Rus. Las. Res. 16(5), 427–475 (1995).

    Article  Google Scholar 

  9. 9.

    G. Ya. Malinovskii, S. B. Mamaev, L. D. Mikheev, T. Yu. Moskalev, M. L. Sentis, V. I. Cheremiskin, and V. I. Yalovoi, “Numerical simulation of the active medium and investigation of the pump source for the development of a photochemical XeF(C-A) amplifier of femtosecond optical pulses,” Qunatum Electron. 31(7), 617–622 (2001).

    Article  ADS  Google Scholar 

  10. 10.

    V. I. Tcheremiskine, http://www.lp3.univmrs

  11. 11.

    S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, B. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C-A) amplifier: State of the art and prospects,” Qunatum Electron. 43(3), 190–200 (2013).

    Article  ADS  Google Scholar 

  12. 12.

    P. J. Hay and T. H. Dunning, “The covalent and ionic states of the xenon halides,” J. Chem. Phys. 69(5), 2209–2220 (1978).

    ADS  Google Scholar 

  13. 13.

    H. Helm, D. L. Huestis, M. J. Dyer, and D. C. Lorents, “Observation of the C(3/2) X(1/2) transition in XeF,” J. Chem. Phys. 79(7), 3220–3226 (1983).

    ADS  Google Scholar 

  14. 14.

    G. Black, R. L. Sharpless, D. C. Lorents, D. L. Huestis, R. A. Gutcheck, T. D. Bonifild, D. A. Helms, and G. K. Walters, “XeF2 photodissociation studies. I. Quantum yields and kinetics of XeF(B) and XeF(C),” J. Chem. Phys. 75(10), 4840–4846 (1981).

    ADS  Google Scholar 

  15. 15.

    N. K. Bibinov, I. P. Vinogradov, L. D. Mikheev, and D. B. Stavrovskii, “Determination of the spectral dependences of the absolute quantum yields of XeF(B, C, D) excimers in photolysis of XeF2,” Sov. J. Quantum Electron. 11(9), 1178–1181 (1981).

    Article  ADS  Google Scholar 

  16. 16.

    H. C. Brashers and D. W. Setser, “Transfer and quenching rate constants for XeF(B) and XeF(C) state in low vibrational levels,” J. Chem. Phys. 76(10), 4932–4946 (1982).

    ADS  Google Scholar 

  17. 17.

    R. W. Vaynant, “XeF state lifetime and quenching by rare gases and fluorine onors,” Appl. Phys. Lett. 64(7), 493–494 (1980).

    Google Scholar 

  18. 18.

    M. Tramšek and B. Žemva, “Synthesis. Properties and chemistry of xenon(II) Fluoride,” Acta Chem. Slov. 53, 105–116 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. F. Losev.

Additional information

Original Russian Text © N.G. Ivanov, V.F. Losev, Yu.N. Panchenko, A.G. Jastremskii, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N.G., Losev, V.F., Panchenko, Y.N. et al. Influence of the gas mixture composition on pumping energy dissipation in a XeF(C-A) amplifier of the hybrid femtosecond laser system THL-100. Atmos Ocean Opt 27, 329–334 (2014). https://doi.org/10.1134/S102485601404006X

Download citation

Keywords

  • numerical simulation
  • amplification of picosecond laser pulses
  • THL-100 hybrid laser system