Skip to main content

Retrieval of atmospheric aerosol parameters from data of a three-wavelength integrating nephelometer

Abstract

Possibilities of retrieving a true value of the scattering coefficient and particle size distribution from data of a three-wavelength integrating nephelometer are analyzed. Two approaches to evaluation of the ratio of the true scattering coefficient to the measured one are suggested. Comparison of the aerosol micro-structure obtained from data of simultaneous measurements with an integrating nephelometer and with a nephelometer-polarimeter PhAN is carried out. The PhAN data are compared with measurements with a differential mobility analyzer.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. G. Beuttell and A. W. Brewer, “Instruments for the measurement of the visual range,” J. Sci. Instrum. 26(11), 357–359 (1949).

    Article  ADS  Google Scholar 

  2. 2.

    A. P. Waggoner, N. C. Ahlquist, and R. J. Charlson, “Measurement of the aerosol total scatter-backscatter ratio,” Appl. Opt. 11(12), 2886–2889 (1972).

    Article  ADS  Google Scholar 

  3. 3.

    B. A. Bodhaine, N. C. Ahlquist, and R. C. Schnell, “Three-wave-length nephelometer suitable for aircraft measurements of background aerosol scattering extinction coefficient,” Atmos. Environ. 25A(10), 2267–2276 (1991).

    Article  ADS  Google Scholar 

  4. 4.

    M. A. Sviridenkov, “Statistical parameterization of scattering phase function,” Izv. AN SSSR, Fiz. Atmosf. Okeana 16(7), 751–754 (1980).

    Google Scholar 

  5. 5.

    P. J. Ricchiazzi and C. Gautier, http://www.arm.gov/publications/proceedings/conf13/extended_abs/ric-chiazzi-pj.pdf

  6. 6.

    T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, and T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13(5), 967–986 (1996).

    Article  ADS  Google Scholar 

  7. 7.

    T. L. Anderson and J. A. Ogren, “Determining aerosol radiative properties using the TSI-3563 integrating nephelometer,” Aerosol Sci. Technol. 29(1), 57–69 (1998).

    Article  Google Scholar 

  8. 8.

    T. Muller, A. Nowak, A. Wiedensohler, P. Sheridan, M. Laborde, D. S. Covert, A. Marinoni, K. Imre, B. Henzing, J.-C. Roger, S. M. Dos Santos, R. Wilhelm, Y.-Q. Wang, and G. de Leeuw, “Angular illumination and truncation of three different integrating nephelometers: implications for empirical, size-based corrections,” Aerosol Sci. Technol. 43(6), 581–586 (2009).

    Article  Google Scholar 

  9. 9.

    H. Moosmuller and W. P. Arnott, “Angular truncation errors in integrating nephelometryters,” Rev. Sci. Instrum. 74(7), 3492–3501 (2003).

    Article  ADS  Google Scholar 

  10. 10.

    J. T. Twitty, “The inversion of aureole measurements to derive aerosol size distributions,” J. Atmos. Sci. 32(4), 584–591 (1975).

    Article  ADS  Google Scholar 

  11. 11.

    P. P. Anikin and M. A. Sviridenkov, “Aerosol optical parameters and microstructure from measurement data of scattering phase functions on the region of solar aureole,” in Proc. of International Symposium “Physics of Atmospheric Aerosol” (Dialog-MGU, Moscow, 1999) [in Russian].

    Google Scholar 

  12. 12.

    M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active spectral nephelometry in the study of microphysical characteristics of submicron aerosol,” Atmos. Ocean. Opt. 17(5–6), 378–386 (2004).

    Google Scholar 

  13. 13.

    H. C. van de Hulst, Light Scattering by Small Particles (New York, Courier Dover Publications, 1957).

    Google Scholar 

  14. 14.

    M. A. Sviridenkov, “Retrieval of atmospheric aerosol characteristics from spectral measurements of transparency and small-angle scattering,” Atmos. Ocean. Opt. 14(12), 1022–1025 (2001).

    Google Scholar 

  15. 15.

    V. V. Veretennikov, “Simultaneous determination of aerosol microstructure and refractive index from sun photometry data,” Atmos. Ocean. Opt. 20(3), 192–199 (2007).

    Google Scholar 

  16. 16.

    N. Chubarova, Ye. Nezval’, M. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010,” Atmos. Measur. Techn. 5(3), 557–568 (2012).

    Article  ADS  Google Scholar 

  17. 17.

    URL: http:/aeronet.gsfs.nasa.gov

  18. 18.

    O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res., D 105(16), 20673–20696 (2000).

    Article  ADS  Google Scholar 

  19. 19.

    S. A. Terpugova, M. V. Panchenko, M. A. Sviridenkov, and T. A. Dokukina, “Relationships between the optical and microphysical parameters of near-ground aerosol condensation activity,” Atmos. Ocean. Opt. 22(4), 405–412 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Sviridenkov.

Additional information

Original Russian Text © M.A. Sviridenkov, K.S. Verichev, S.S. Vlasenko, A.S. Emilenko, E.F. Mikhailov, E.Yu. Nebos’ko, 2014, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sviridenkov, M.A., Verichev, K.S., Vlasenko, S.S. et al. Retrieval of atmospheric aerosol parameters from data of a three-wavelength integrating nephelometer. Atmos Ocean Opt 27, 230–236 (2014). https://doi.org/10.1134/S1024856014030129

Download citation

Keywords

  • Aerosol Optical Depth
  • Oceanic Optic
  • Scanning Mobility Particle Sizer
  • Single Scat Tering Albedo
  • Differential Mobility Analyzer