Skip to main content

Use of a linear estimation method in calculation of integral parameters of atmospheric aerosol from spectral measurements of its optical depth

Abstract

The linear estimation method is used to calculate the integral parameters of atmospheric aerosol, such as volume density and effective radius, from spectra of aerosol optical depth measured with a sun photometer. Three-month runs of optical depth measured at seven wavelengths at four AERONET stations, characterized by different aerosol types (urban, biomass burning, desert dust, and marine), were chosen for testing the method. Comparison of the results with retrievals from standard AERONET algorithm shows a good agreement between these methods. However, the linear estimation method allows retrieving time series of particle parameters from direct sun measurements with a high time resolution of about several minutes. This method can be used in instruments that do not provide angular scanning of sky radiance, e.g., the PFR/GAW sun photometers network.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    IPCC 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (University Press, NY; Cambridge, 2007).

    Google Scholar 

  2. 2.

    J. Hansen, M. Sato, P. Kharecha, and K. von Schuckmann, “Earth’s energy imbalance and implications,” Atmos. Chem. Phys. 11(24), 13421–13449 (2011).

    Article  ADS  Google Scholar 

  3. 3.

    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

    Article  Google Scholar 

  4. 4.

    O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105(16), 20673–20696 (2000).

    Article  ADS  Google Scholar 

  5. 5.

    A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, “Cloud screening and quality control algorithms for AERONET database,” Remote Sens. Environ. 73(3), 337–349 (2000).

    Article  Google Scholar 

  6. 6.

    M. King, D. Byrne, B. Herman, and J. Reagan, “Aerosol size distributions obtained by the inversion of spectral optical depth measurements,” J. Atmos. Sci. 35(11), 2153–2167 (1978).

    Article  ADS  Google Scholar 

  7. 7.

    I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, U. Wandinger, and D. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multi-wavelength lidar sounding,” Appl. Opt. 41(18), 3685–3699 (2002).

    Article  ADS  Google Scholar 

  8. 8.

    A. Ansmann and D. Muller, Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, New York, 2005).

    Google Scholar 

  9. 9.

    D. Muller, U. Wandinger, and A. Ansmann, “Micro-physical particle parameters from extinction and back-scatter lidar data by inversion with regularization: Theory,” Appl. Opt. 38(12), 2346–2357 (1999).

    Article  ADS  Google Scholar 

  10. 10.

    L. W. Thomason and M. T. Osborn, “Lidar conservation parameters derived from SAGE II extinction measurements,” Geophys. Rev. Lett. 19(16), 1655–1658 (1992).

    Article  ADS  Google Scholar 

  11. 11.

    D. Donovan and A. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol back-scatter and extinction measurements,” Appl. Opt. 36(36), 9406–9424 (1997).

    Article  ADS  Google Scholar 

  12. 12.

    I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).

    Google Scholar 

  13. 13.

    M. De Graaf, D. Donovan, and A. Apituley, “Feasibility study of integral property retrieval for tropospheric aerosol from raman lidar data using principal component analysis,” Appl. Opt. 52(10), 2173–2186 (2013).

    Article  ADS  Google Scholar 

  14. 14.

    O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

    Article  ADS  Google Scholar 

  15. 15.

    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

    Google Scholar 

  16. 16.

    M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, San-Diego, 2000).

    Google Scholar 

  17. 17.

    O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006). doi 10.1029/2005JD006619

    Article  ADS  Google Scholar 

  18. 18.

    I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanre, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res. 115, D21203 (2010). doi 10.1029/2010JD014139

    Article  ADS  Google Scholar 

  19. 19.

    S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Linear Measurements (Elsevier, New York, 1977).

    Google Scholar 

  20. 20.

    A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzierl, T. Muller, and J. Heintzenberg, “Saharan mineral dust experiments SAMUM-1 and SAMUM-2: What have we learned?,” Tellus B63(4), 403–429 (2011).

    Article  ADS  Google Scholar 

  21. 21.

    L. Baltensperger and C. Barrie, http://www.wmo.ch/pages/prog/arep/gaw/gaw-reports.html

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Suvorina.

Additional information

Original Russian Text © A.S. Suvorina, I.A. Veselovskii, M.Yu. Korenskii, A.V. Kolgotin, 2014, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suvorina, A.S., Veselovskii, I.A., Korenskii, M.Y. et al. Use of a linear estimation method in calculation of integral parameters of atmospheric aerosol from spectral measurements of its optical depth. Atmos Ocean Opt 27, 237–246 (2014). https://doi.org/10.1134/S1024856014030117

Download citation

Keywords

  • Aerosol Optical Depth
  • Effective Radius
  • Integral Parameter
  • Marine Aerosol
  • Particle Parameter