Skip to main content

A volcanogenic intensification factor of stratosphere-troposphere exchange

Abstract

A mechanism of volcanic aerosol transport to the stratosphere after Plinian-type eruptions, when the maximal height of the emission does not exceed the tropopause altitude, is suggested. The NOAA HYSPLIT trajectory model and open global temperature data are used in order to show the role of the volcanic gas-ash clouds in the temperature change of the upper troposphere and lower stratosphere, tropopause destruction, and, as a consequence, intensification of the stratosphere-troposphere exchange. An abnormal increase in surface ozone concentrations is recorded during the passage of volcanic clouds.

This is a preview of subscription content, access via your institution.

References

  1. http://www.volcano.si.edu/index.cfm

  2. D. Hofmann, J. Barnes, E. Dutton, T. Deshler, H. Jager, R. Keen, and M. Osborn, “Surface-based observations of volcanic emissions to the stratosphere,” in Volcanism and the Earth’s Atmosphere, Geophys. Monogr. Ser. (AGU, Washington, 2004), Vol. 139, pp. 57–73.

    Google Scholar 

  3. V. N. Marichev and I. V. Samokhvalov, “Lidar observations of aerosol volcanic layers in stratosphere of Western Siberia in 2008–2010,” Opt. Atmosf. Okeana 24(3), 224–231 (2011).

    Google Scholar 

  4. T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann, “35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajokull, and beyond,” Atmos. Chem. Phys. Discuss. 12(9), 23135–23193 (2012).

    ADS  Article  Google Scholar 

  5. A. W. Woods and S. Self, “Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height,” Nature (Gr. Brit.) 355(6361), 628–630 (1992).

    ADS  Article  Google Scholar 

  6. W. I. Rose and A. J. Durant, “El Chichon volcano, April 4, 1982: volcanic cloud history and fine ash fallout,” Natural Hazards 51(2), 363–374 (2009).

    Article  Google Scholar 

  7. W. I. Rose, D. J. Delene, D. J. Schneider, G. J. S. Bluth, J. J. Krueger, I. Sprod, C. McKee, H. L. Davies, and G. G. J. Ernst, “Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects,” Nature (Gr. Brit.) 375(6531), 477–479 (1995).

    ADS  Article  Google Scholar 

  8. R. B. Symonds, W. I. Rose, G. Bluth, and T. M. Gerlach, “Volcanic gas studies: methods, results, and applications,” Rev. Mineral. 30(1), 1–66 (1994).

    Google Scholar 

  9. B. S. Liu and C. T. Au, “Carbone deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas,” Appl. Catal. A: General 244(1), 181–195 (2003).

    Article  Google Scholar 

  10. V. F. Surovikin, “Modern tendencies in the developemtn of methods and technologies for producing nanodispersed carbon materials,” Ros. Khim. Zh. 51(4), 92–97 (2007).

    Google Scholar 

  11. L. Kh. Ingel’, “Self-action of a heat-releasing admixture in a liquid medium,” Phys. Uspekhi 41(1), 95–99 (1998).

    ADS  Article  Google Scholar 

  12. L. F. Radke, J. H. Lyons, P. V. Hobbs, and R. E. Weiss, “Smokes from the burning of aviation fuel and their self-lofting by solar heating,” J. Geophys. Res., D 95(9), 14071–14076 (1990).

    ADS  Article  Google Scholar 

  13. http://weather.uwyo.edu/upperair/sounding.html

  14. http://www.ready.noaa.gov/HYSPLIT.php

  15. J. Lelieveld and F. J. Dentener, “What controls tropospheric ozone?,” J. Geophys. Res., D 105(3), 3531–3551 (2000).

    ADS  Article  Google Scholar 

  16. http://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zuev.

Additional information

Original Russian Text © V.V. Zuev, N.E. Zueva, E.S. Savel’eva, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.V., Zueva, N.E. & Savel’eva, E.S. A volcanogenic intensification factor of stratosphere-troposphere exchange. Atmos Ocean Opt 27, 195–199 (2014). https://doi.org/10.1134/S1024856014020158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014020158

Keywords

  • Surface Ozone
  • Eruptive Column
  • Aerosol Layer
  • Stratospheric Aerosol
  • Volcanic Emission