Skip to main content
Log in

Accounting for the effect of large-scale atmospheric inhomogeneities in problems of laser radiation propagation along long high-altitude paths

  • Optical Waves Propagation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


We show that large-scale atmospheric inhomogeneities observed experimentally can significantly affect optical radiation propagation along long paths, and it is impossible to take into account this effect within the classical turbulence model. We suggest a new algorithm for numerical simulation of laser beam propagation along long low-inclined atmospheric paths with large-scale atmospheric inhomogeneities, which allows one to consider beam refraction and focusing at large-scale inhomogeneities along with beam distortions due to small-scale inhomogeneities and regular refraction in a vertical plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. V. E. Zuev, Propagation of Visible and IR Waves in the Atmosphere (Sov. radio, Moscow, 1970) [in Russian].

    Google Scholar 

  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).

    Google Scholar 

  4. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31(15), 2865–2882 (1992).

    Article  ADS  Google Scholar 

  5. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30(4), 299–303 (1941).

    ADS  Google Scholar 

  6. A. M. Obukhov, “On the distribution of energy in the spectrum of turbulent flow,” Dokl. Akad. Nauk SSSR 32(1), 22–24 (1941).

    MathSciNet  Google Scholar 

  7. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

    Google Scholar 

  8. V. I. Tatarskii, The Effects of the Turbulence Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).

    Google Scholar 

  9. M. E. Gracheva and A. S. Gurvich, “Strong fluctuations in the intensity of light propagated through the atmosphere close to the Earth,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 8(4), 711–724 (1965).

    Google Scholar 

  10. W. A. Coles and R. G. Frehlich, “Simultaneous measurements of angular scattering and intensity scintillation in the atmosphere,” J. Opt. Soc. Amer. 72(8), 1042–1048 (1982).

    Article  ADS  Google Scholar 

  11. R. L. Phillips and L. C. Andrews, “Measured statistics of laser-light scattering in atmospheric turbulence,” J. Opt. Soc. Amer. 71(12), 1440–1445 (1981).

    Article  ADS  Google Scholar 

  12. A. Consortini, F. Cochetti, J. H. Churnside, and R. J. Hill, “Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation,” J. Opt. Soc. Amer., A 10(11), 2354–2362 (1993).

    Article  ADS  Google Scholar 

  13. W. A. Bernard, B. M. Welsh, M. C. Roggemann, and R. J. Feldmann, “Atmospheric turbulence characterization of a low-altitude long horizontal path,” Proc. SPIE 2828, 198–209 (1996).

    Article  ADS  Google Scholar 

  14. N. Perlot, D. Giggenbach, H. Henniger, J. Horwath, M. Knapek, and K. Zettl, “Measurements of the beam wave fluctuations over a 142 km atmospheric path,” Proc. SPIE 6304, 63041O (2006).

    Article  ADS  Google Scholar 

  15. W. M. Hughes and R. B. Holmes, “Pupil-plane imager for scintillometry over long horizontal paths,” Appl. Opt. 46(29), 7099–7109 (2007).

    Article  ADS  Google Scholar 

  16. M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Preliminary experimental evidence of anisotropy of turbulence at Maui Space Surveillance Site,” in Proc. of AMOS Conf., Ed. by S. Ryan (2006), pp. 538–547.

    Google Scholar 

  17. G. R. Ochs, R. R. Bergman, and J. R. Snyder, “Laser beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Amer. 59, 231–234 (1969).

    Article  Google Scholar 

  18. M. A. Vorontsov, G. W. Carhart, V. S. Rao Gudimetla, T. Weyrauch, E. Stevenson, S. L. Lachinova, L. A. Beresnev, J. Liu, K. Rehder, and J. F. Riker, “Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons,” in Proc. Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, Hawaii, September 14–17, 2010, Ed. by S. Ryan (The Maui Economic Development Board), p. E18.

  19. M. Vorontsov, J. Riker, G. Carhart, V. S. Gudimetla, L. Beresnev, T. Weyrauch, and L. Roberts, “Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope,” Appl. Opt. 48(1), 47–57 (2009).

    Article  ADS  Google Scholar 

  20. A. S. Gurvich, M. E. Gorbunov, O. V. Fedorova, G. Kirchengast, V. Proschek, Abad G. González, and K. A. Tereszchuk, “Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment,” Apl. Opt. 51(30), 7374–7383 (2012).

    Article  ADS  Google Scholar 

  21. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves in Random Media 2(3), 209–224 (1992).

    Article  ADS  MATH  Google Scholar 

  22. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Effectiveness of the subharmonic method in problems of computer simulation of laser beam propagation in a turbulent atmosphere,” Atmos. Ocean. Opt. 25(2), 106–109 (2012).

    Article  Google Scholar 

  23. A. M. Vorontsov and P. V. Paramonov, “Simulation of extended phase screens in problems of optical wave propagation through the atmosphere,” Radiophys. Quant. Electron. 49(1), 18–30 (2006).

    Article  ADS  Google Scholar 

  24. M. A. Kolosov and A. V. Shabel’nikov, Electromagnetic Wave Refraction in the Earth’s Atmosphere (Sov. radio, Moscow, 1976) [in Russian].

    Google Scholar 

  25. V. V. Vinogradov, Atmospheric Effect on Geodetic Measurements (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 


  27. V. N. Marichev and D. A. Bochkovskii, “Lidar measurements of air density in the middle atmosphere. Part 1. Modeling of the potential capabilities in the visible spectral range,” Opt. Atmosf. Okeana 26(7), 553–563 (2013).

    Google Scholar 

  28. V. N. Marichev and D. A. Bochkovskii, “Lidar measurements of air density in the middle atmosphere. Part 2. Modeling of the potential sounding capabilities in the UV spectrum,” Opt. Atmos. Okeana 26(8), 701–704 (2013).

    Google Scholar 

  29. G. I. Taylor, “The spectrum of turbulence,” Proc. Roy Soc. Lond. 164, 476–490 (1938).

    Article  ADS  Google Scholar 

  30. A. S. Gurvich and M. E. Gracheva, “A simple model for calculation of turbulent noises in optics systems,” Izv. AN SSSR, Fiz. Atmosf. Okeana 16(10), 1107–1111 (1980).

    ADS  Google Scholar 

  31. A. S. Gurvich, V. V. Vorob’ev, and O. V. Fedorova, “Strong scintillation spectra behind the atmosphere with large- and small-scale inhomogeneities,” Atmos. Ocean. Opt. 24(4), 347–357 (2011).

    Article  Google Scholar 

  32. V. V. Nosov, P. G. Kovaldo, V. P. Lukin, and A. V. Torgaev, “Atmospheric coherent turbulence,” Atmos. Ocean. Opt. 26(3), 201–206 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. V. Dudorov.

Additional information

Original Russian Text © V.V. Kolosov, V.V. Dudorov, G.A. Filimonov, A.S. Panina, M.A. Vorontsov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosov, V.V., Dudorov, V.V., Filimonov, G.A. et al. Accounting for the effect of large-scale atmospheric inhomogeneities in problems of laser radiation propagation along long high-altitude paths. Atmos Ocean Opt 27, 123–129 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: