Skip to main content

Analysis of relationship between condensation activity of surface aerosol and its chemical composition and relative air humidity according to measurements at the Zvenigorod Scientific Station


Data of IR transmission spectra of aerosol samples and measurements of optical characteristics of surface aerosol at the Zvenigorod Scientific Station are used to study the statistical relationship between the Hänel condensation activity parameter and relative air humidity and the basic chemical components of aerosol, namely, sulfate, nitrate, and mineral components, contained in particles with diameters of 1–2 μm. It is found that the Hänel parameter of nitrate-containing surface aerosol decreases with an increase in relative air humidity. An increase in the fraction of nitrates in micron particles is likely to lead to a minor increase in the Hänel parameter. Poorly soluble mineral particles present in the 2-micron fraction of aerosol lead to a decrease in the Hänel parameter. Values of the Hänel parameter, characteristic for sulfate aerosol, are likely to be in the range of 0.4–0.6. Seasonal variations in the Hänel parameter are caused by changes in the aerosol chemical composition, to some degree.

This is a preview of subscription content, access via your institution.


  1. K. Ya. Kondrat’ev, “Aerosol as a climate-forming component of the atmosphere. 2. Direct and indirect impact on climate,” Atmos. Ocean. Opt. 15(4), 267–284 (2002).

    Google Scholar 

  2. L. S. Ivlev, “Aerosol forcing in climate processes,” Opt. Atmosf. Okeana 24(5), 392–410 (2011).

    Google Scholar 

  3. L. S. Ivlev, Climatic Composition and Structure of Atmospheric Aerosols (Izd. Leningr. un-ta, Leningrad, 1982) [in Russian].

    Google Scholar 

  4. P. H. McMurry, “A review of atmospheric aerosol measurements,” Atmos. Environ. 34(12–14), 1959–1999 (2000).

    Article  ADS  Google Scholar 

  5. E. Swietlicki, H.-C. Hansson, K. Hämeri, B. Swenningsson, A. Massling, G. McFiggans, P. H. McMurry, T. Petäjä, P. Tunved, M. Gysel, D. Topping, E. Weingartner, U. Baltensperger, J. Rissler, and A. Wiedensohler, “Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments-a review,” Tellus., B 60(3), 432–469 (2008).

    Article  ADS  Google Scholar 

  6. E. Mikhailov, S. Vlasenko, R. Niessner, and U. Pöschl, “Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement,” Atmos. Chem. Phys. 4(2), 323–350 (2004).

    Article  ADS  Google Scholar 

  7. P. Saxena, L. M. Hildemann, P. H. McMurry, and J. H. Seinfeld, “Organics alter hygroscopic behavior of atmospheric particles,” J. Geophys. Res., D 100(9), 18755–18770 (1995).

    Article  ADS  Google Scholar 

  8. Y. Shi, M. Ge, and W. Wang, “Hygroscopicity of internally mixed aerosol particles containing benzoic acid and inorganic salts,” Atmos. Environ. 60(1), 9–17 (2012).

    Article  ADS  Google Scholar 

  9. G. Hänel, “The real part of the mean complex refractive index and the mean density of samples of atmospheric aerosol particles,” Tellus 20(3), 371–379 (1968).

    Article  ADS  Google Scholar 

  10. F. Kasten, “Visibility forecast in the phase of pre-condensation,” Tellus 21(5), 631–635 (1969).

    Article  ADS  Google Scholar 

  11. A. A. Isakov, A. N. Gruzdev, and A. V. Tikhonov, “Long-period variations of optical and microphysical parameters of the near-surface aerosol,” Opt. Atmosf. Okeana 18(5–6), 350–356 (2005).

    Google Scholar 

  12. M. V. Panchenko, S. A. Terpugova, V. S. Kozlov, V. V. Pol’kin, and E. P. Yausheva, “Annual behavior of the condensation activity of submicron aerosol in the atmospheric surface layer of Western Siberia,” Opt. Atmos. Okeana 18(8), 607–611 (2005).

    Google Scholar 

  13. A. A. Isakov and A. N. Gruzdev, “Long-period variations in the optical and microphysical parameters of surface aerosol in a Moscow suburb,” Izv., Atmos. Ocean. Phys. 45(2), 233–241 (2009).

    Article  Google Scholar 

  14. M. V. Panchenko, S. A. Terpugova, T. A. Dokukina, V. V. Pol’kin, and E. P. Yausheva, “Multiyear variations in aerosol condensation activity in Tomsk,” Atmos. Ocean. Opt. 25(4), 251–255 (2012).

    Article  Google Scholar 

  15. S. A. Terpugova, L. P. Golobokova, D. G. Chernov, V. P. Shmargunov, and M. V. Panchenko, “Comparative analysis of condensation activity and climatic composition of surface aerosol,” in Proc. of the XVIII Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2011), p. 4 [in Russian].

    Google Scholar 

  16. A. N. Gruzdev, A. A. Isakov, and L. M. Shukurova, “Correlation between the condensation activity parameter of surface aerosol and air density and chemical aerosol composition from measurements at Zvenigorod scientific station of IPA RAS,” in Proc. of the XIX Workshop “Siberian Aerosols” (Publishing House of IAO SB RAS, Tomsk, 2012), pp. 4–5 [in Russian].

    Google Scholar 

  17. S. A. Terpugova, T. A. Dokukina, E. P. Yausheva, and M. V. Panchenko, “Seasonal peculiarities of manifestation of different types of gygrograms for the scattering coefficient,” Opt. Atmosf. Okeana 25(11), 952–957 (2012).

    Google Scholar 

  18. L. M. Shukurova and A. N. Gruzdev, “Temporal variability of the chemical composition of surface aerosol in the Moscow region in 1999–2005 from the results of infrared spectroscopy of aerosol samples,” Izv., Atmos. Ocean. Phys. 46(3), 304–318 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. N. Gruzdev.

Additional information

Original Russian Text © A.N. Gruzdev, A.A. Isakov, L.M. Shukurova, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruzdev, A.N., Isakov, A.A. & Shukurova, L.M. Analysis of relationship between condensation activity of surface aerosol and its chemical composition and relative air humidity according to measurements at the Zvenigorod Scientific Station. Atmos Ocean Opt 27, 169–175 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: