Advertisement

Atmospheric and Oceanic Optics

, Volume 27, Issue 2, pp 115–122 | Cite as

Thermal self-action of high-power continuous and pulse-periodic CO2 laser radiation in air: II. Laboratory experiments

  • G. N. Grachev
  • A. A. ZemlyanovEmail author
  • A. G. Ponomarenko
  • V. N. Tishchenko
  • Yu. E. Geints
  • A. M. Kabanov
  • A. A. Pavlov
  • Al. A. Pavlov
  • V. A. Pogodaev
  • P. A. Pinaev
  • A. L. Smirnov
  • P. A. Statsenko
Optical Waves Propagation

Abstract

Results of laboratory experiments on nonlinear propagation of high-power pulse-periodic and continuous CO2 laser radiation in a gas medium are presented. The experiments were carried out in a cell filled with a mixture of air and carbon dioxide in different partial concentrations (∼1–4%) under strong absorption and thermal blooming of laser radiation. The experimental conditions simulated the atmospheric propagation of high-power laser radiation along a kilometer-long path. Sharply focused laser beams were used; the regions of heat release along the beam channel were recorded by the shadow imaging technique. We found that, despite increased intensity, the focal waist of a laser beam is characterized by reduced heat release as compared to that in the pre- and postfocal beam regions. The saturation effect of the resonance absorption coefficient of CO2 at high pulse peak intensity (blooming effect) is considered as the most probable physical cause of the above feature. For continuous radiation, this effect is much weaker.

Keywords

Laser Radiation Pulse Repetition Rate Pulse Periodic Thermal Lens Continuous Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Tishchenko, V. V. Apollonov, G. N. Grachev, A. I. Gulidov, V. I. Zapryagaev, Ya. G. Men’shikov, A. L. Smirnov, and A. V. Sobolev, “Interaction of an optical pulsed discharge with a gas: conditions for stable generation and merging of shock waves,” Quant. Electron. 34(10), 941–947 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    V. N. Tishchenko, V. G. Posukh, A. I. Gulidov, V. I. Zapryagaev, A. A. Pavlov, E. L. Boyarintsev, M. P. Golubev, I. N. Kavun, A. V. Melekhov, L. S. Golobokova, I. B. Miroshnichenko, Al. A. Pavlov, and A. S. Shmakov, “Criteria for formation of low-frequency sound under wide-aperture repetitively pulsed laser irradiation of solids,” Quant. Electron. 41(10), 895–900 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Tishchenko, V. G. Posukh, E. L. Boyarintsev, A. V. Melekhov, L. S. Golobokova, and I. B. Miroshnichenko, “Effectiveness of forming of the shock waves created by optical breakdowns on the surface of solid bodies,” Opt. Atmosf. Okeana 25(5), 448–450 (2012).Google Scholar
  4. 4.
    E. L. Breig, “Limitations on the atmospheric thermal effects for high-power CO2 laser beams,” J. Opt. Soc. Am. 62(4), 518–528 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Optics of Atmosphere (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  6. 6.
    Yu. E. Geints, G. N. Grachev, A. A. Zemlyanov, A. M. Kabanov, A. A. Pavlov, A. G. Ponomarenko, and V. N. Tishchenko, “Thermal self-action of high-power continuous and pulse-periodic SO2 laser radiation in air: I. Numerical simulation of atmospheric path propagation,” Atmos. Ocean. Opt. 27(2), 147–153 (2014).CrossRefGoogle Scholar
  7. 7.
    B. G. Ageev, Yu. N. Ponomarev, and L. K. Chistyakova, “Study of pulse CO2 laser absorption by air and carbon dioxide,” Izv. Vuzov, Fiz., No. 10, 49–51 (1982).Google Scholar
  8. 8.
    A. A. Pavlov, A. Al. Pavlov, and M. P. Golubev, “Some aspects of Schlieren technique sensitivity increasing,” in Proc. of the 16th International Sympos. on Applications of Laser Techniques to Fluid Mechanics (ISALTFM 2012), Portugal, Lisbon, 9–12 Jul., 2012, pp. 1–14.Google Scholar
  9. 9.
    B. F. Gordiets, A. I. Osipov, and R. V. Khokhlov, “Gas cooling during propagation of high-power CO2 laser radiation though the atmosphere,” Zh. Tekh. Fiz. 44(5), 1063–1069 (1974).Google Scholar
  10. 10.
    V. V. Netesov, “Effect of kinetics of molecular absorption of radiation on the propagation of a pulse with λ = 10.6 μm in the atmosphere,” J. Appl. Mech. Techn. Phys. 27(4), 473–478 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    B. G. Ageev, Yu. N. Ponomarev, and B. A. Tikhomirov, Nonlinear Photoacoustic Spectroscopy of Molecular Gases (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • G. N. Grachev
    • 1
  • A. A. Zemlyanov
    • 2
    Email author
  • A. G. Ponomarenko
    • 1
  • V. N. Tishchenko
    • 1
  • Yu. E. Geints
    • 2
  • A. M. Kabanov
    • 2
  • A. A. Pavlov
    • 3
    • 4
  • Al. A. Pavlov
    • 3
    • 4
  • V. A. Pogodaev
    • 2
  • P. A. Pinaev
    • 1
  • A. L. Smirnov
    • 1
  • P. A. Statsenko
    • 1
  1. 1.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations