Skip to main content
Log in

Thermal self-action of high-power continuous and pulse-periodic CO2 laser radiation in air: I. Numerical simulation of propagation along an atmospheric path

  • Optical Waves Propagation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


A problem of transportation of high-power laser radiation energy at a wavelength of 10.6 μm in the atmosphere is theoretically considered in terms of its thermal and wind nonlinearities. The power characteristics of continuous and pulse-periodic radiation are studied during propagation along a surface kilometer-long atmospheric path with sharp focusing onto a receiver. Key factors most affecting high-power radiation propagation are found. It is ascertained that an undesirable effect of thermal defocusing can be reduced using a train of low-power short pulses with a quite high repetition rate due to the effect of light-induced “blooming” of the gas medium. The questions of scaling optical paths from the viewpoint of their equivalence in manifestation of thermal nonlinearity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. P. K. Tret’yakov, G. N. Grachev, A. I. Ivanchenko, V. L. Krainev, A. G. Ponomarenko, and V. N. Tishchenko, “Stabilization of optical discharge in supersonic gas flow,” Dokl. RAN 336(4), 466–467 (1994).

    Google Scholar 

  2. G. N. Grachev, A. G. Ponomarenko, A. L. Smirnov, and V. B. Shulyat’ev, “Multifunctional 3 kW CO2 laser with controllable spectral and temporal characteristics for industrial and scientific applications,” Proc. SPIE 4165, 185 (2000).

    Article  ADS  Google Scholar 

  3. V. N. Tishchenko, V. V. Apollonov, G. N. Grachev, A. I. Gulidov, V. I. Zapryagaev, Ya. G. Men’shikov, A. L. Smirnov, and A. V. Sobolev, “Interaction of an optical pulsed discharge with a gas: conditions for stable generation and merging of shock waves,” Quantum Electron. 34(10), 941–947 (2004).

    Article  ADS  Google Scholar 

  4. V. N. Tishchenko, “Generation of a low-frequency wave by an optical discharge moving in a gas at a subsonic speed,” Quantum Electron. 33(9), 823–830 (2003).

    Article  ADS  Google Scholar 

  5. G. N. Grachev, A. G. Ponomarenko, V. N. Tishchenko, A. L. Smirnov, S. I. Trashkeev, P. A. Statsenko, M. I. Zimin, A. A. Myakushina, V. I. Zapryagaev, A. I. Gulidov, V. M. Boiko, A. A. Pavlov, and A. V. Sobolev, “Merging of shock waves produced by a moving pulsating optical discharge,” Quantum Electron. 36(5), 470–472 (2006).

    Article  ADS  Google Scholar 

  6. V. N. Tishchenko, G. N. Grachev, V. I. Zapryagaev, A. L. Smirnov, and A. V. Sobolev, “Spectrum of shock waves produced by an optical discharge at a high laserpulse repetition rate,” Quantum Electron. 32(4), 329–334 (2002).

    Article  ADS  Google Scholar 

  7. V. V. Apollonov and V. N. Tishchenko, “Laser engine based on the resonance merging of shock waves,” Quantum Electron. 36(7), 673–683 (2006).

    Article  ADS  Google Scholar 

  8. S. N. Bagaev, G. N. Grachev, A. G. Ponomarenko, A. L. Smirnov, V. N. Demin, A. V. Okotrub, A. M. Baklanov, and A. A. Onishchuk, “Laser plasma-chemical synthesis of nanomaterials in fast gas flows, first results and prospects of the method,” in Science and Nanotechnologies (Izd-vo SO RAN, Novosibirsk, 2007), pp. 123–135 [in Russian].

    Google Scholar 

  9. A. N. Malov, A. M. Orishich, V. M. Fomin, D. A. Vnuchkov, D. G. Nalivaichenko, and V. F. Chirkashenko, “Study of the structure of supersonic airflows with energy supply from a quasi-stationary optical discharge,” Izv. Tom. Politekhn. Un-ta 317(4), 155–160 (2010).

    Google Scholar 

  10. A. N. Malov and A. M. Orishich, “Formation of an optical pulsed discharge in a supersonic air flow by radiation of a repetitively pulsed CO2 laser,” Quantum Electron. 42(9), 843–847 (2012).

    Article  ADS  Google Scholar 

  11. V. V. Apollonov, V. V. Kiiko, V. I. Kislov, A. G. Suzdal’tsev, and A. B. Egorov, “High-frequency repetitively pulsed operating regime in high-power wide-aperture lasers,” Quantum Electron. 33(9), 753–757 (2003).

    Article  ADS  Google Scholar 

  12. V. N. Tishchenko, V. G. Posukh, E. L. Boyarintsev, A. V. Melekhov, L. S. Golobokova, and I. B. Miroshnichenko, “Effectiveness of forming of the shock waves created by optical breakdowns on the surface of solid bodies,” Opt. Atmosf. Okeana 25(5), 448–450 (2012).

    Google Scholar 

  13. V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Optics of Atmosphere (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  14. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Optics of Atmosphere, Ed. by A.A. Zemlyanov (Izd-vo IAO SB RAS, Tomsk, 2010) [in Russian].

  15. F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15(6), 1479–1493 (1974).

    Article  ADS  Google Scholar 

  16. Laser Beam Propagation in the Atmosphere, Ed. by D.V. Stroben (Mir, Moscow, 1981), [in Russian].

    Google Scholar 

  17. V. V. Vorob’ev, Thermal Self-Action of Laser Radiation in the Atmosphere (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  18. A. D. Wood, M. Camac, and E. T. Gerry, “Effects of 10.6-mkm laser induced air chemistry on the atmospheric refractive index,” Appl. Opt. 10(8), 1877–1884 (1971).

    Article  ADS  Google Scholar 

  19. S. A. Losev, “Kinetics of vibrational energy exchange in carbon dioxide and its mixtures with other gases,” Fiz. Goreniya Vzryva, No. 2, 163–179 (1976).

    Google Scholar 

  20. E. L. Breig, “Limitations on the atmospheric thermal effects for high-power CO2 laser beams,” J. Opt. Soc. Amer. 62(4), 518–528 (1972).

    Article  ADS  Google Scholar 

  21. V. M. Gordienko, V. A. Gorshkov, V. Ya. Panchenko, and A. P. Sukhorukov, “Kinetic cooling of a CO2-N2 gas mixture by CO2-laser radiation,” Sov. Phys. JETP 46(3), 459–464 (1977).

    ADS  Google Scholar 

  22. J. Wallace and J. Pasciak, “Compensating for thermal blooming of repetitively pulsed lasers,” J. Opt. Soc. Amer. 65(11), 1257–1260 (1974).

    Article  ADS  Google Scholar 

  23. B. G. Ageev, Yu. N. Ponomarev, and L. K. Chistyakova, “Study of pulse CO2 laser absorption by air and carbon dioxide,” Izv. Vuzov, Fiz., No. 10, 49–51 (1982).

    Google Scholar 

  24. B. F. Gordiets, A. I. Osipov, and R. V. Khokhlov, “Gas cooling during propagation of high-power CO2 laser radiation though the atmosphere,” Zh. Tekh. Fiz. 44(5), 1063–1069 (1974).

    Google Scholar 

  25. A. A. Mitsel’, Yu. N. Ponomarev, and K. M. Firsov, “Nonlinear spectroscopic effects on atmospheric propagation of high-power laser radiation with a wavelength of 10.6 μm,” Izv. AN SSSR, Fiz. Atmosf. Okeana 23(2), 165–170 (1987).

    ADS  Google Scholar 

  26. B. G. Ageev, Yu. N. Ponomarev, and B. A. Tikhomirov, Nonlinear Photoacoustic Spectroscopy of Molecular Gases (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  27. Yu. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Izd-vo SO RAN, Novosibirsk, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. A. Zemlyanov.

Additional information

Original Russian Text © Yu.E. Geints, G.N. Grachev, A.A. Zemlyanov, A.M. Kabanov, A.A. Pavlov, A.G. Ponomarenko, V.N. Tishchenko, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Grachev, G.N., Zemlyanov, A.A. et al. Thermal self-action of high-power continuous and pulse-periodic CO2 laser radiation in air: I. Numerical simulation of propagation along an atmospheric path. Atmos Ocean Opt 27, 107–114 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: