Atmospheric and Oceanic Optics

, Volume 27, Issue 1, pp 10–15 | Cite as

Retrieval of the pressure signal form from a microphone pulse signal

  • B. A. Tikhomirov
Spectroscopy of Ambient Medium


A technique for computer retrieval of the pressure signal form from a pulse microphone signal is proposed. It is shown that the time of collisional relaxation of molecules from the excited state to the ground state can be measured on the basis of this technique with the use of a time-resolved photoacoustic spectrometer.


Oceanic Optic Water Vapor Pressure Ruby Laser Microphone Signal Collisional Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Zharov and V. S. Letokhov, PA Laser Spectroscopy (Nauka, Moscow, 1984) [in Russian].Google Scholar
  2. 2.
    A. B. Antipov, V. A. Kapitanov, Yu. N. Ponomarev, and V. A. Sapozhnikova, PA Method in the Laser Spectroscopy of Molecular Gases (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  3. 3.
    Air Monitoring by Spectroscopic Techniques, Ed. by M.W. Sigrist (John Wiley & Sons, Inc., N.Y., 1994).Google Scholar
  4. 4.
    A. B. Tikhomirov, K. M. Firsov, V. S. Kozlov, M. V. Panchenko, Yu. N. Ponomarev, and B. A. Tikhomirov, “Investigation of spectral dependence of shortwave radiation absorption by ambient aerosol using time-resolved photoacoustic technique,” Opt. Eng. 44(7), 071203-1–071203-11 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Yu. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14(17), 7552–7558 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Kapitanov, K. Yu. Osipov, A. E. Protasevich, and Yu. N. Ponomarev, “Collisional parameters of N2 broadened methane lines in the R9 multiplet of the 2ν3 band. Multispectrum fittings of the overlapping spectral lines,” J. Quant. Spectros. and Radiat. Trasfer 113(16), 1985–1992 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. M. Makogon, Yu. N. Ponomarev, and B. A. Tikhomirov, “The problem of water vapor absorption in the UV spectral range,” Atmos. Ocean. Opt. 26(1), 45–49 (2013).CrossRefGoogle Scholar
  8. 8.
    B. G. Ageev, A. N. Gruzdev, G. V. Matyashenko, D. A. Savchuk, V. A. Sapozhnikova, and Yu. N. Ponomarev, “Variations and trends in CO2 and H2O content in coniferous tree-rings,” Atmos. Ocean. Opt. 26(3), 245–251 (2013).CrossRefGoogle Scholar
  9. 9.
    N. N. Bochkarev, A. M. Kabanov, and A. N. Stepanov, “Spatial localization of a filamentation zone along the propagation path of focused femtosecond laser radiation in air,” Atmos. Okean. Opt. 20(10), 787–791 (2007).Google Scholar
  10. 10.
    P. V. Slobodskaya, “Determination of the rate of transition of vibrational energy of molecules into the energy of progressive motion using a spectrophone,” Izv. AN SSSR 12(5), 656–661 (1948).Google Scholar
  11. 11.
    P. V. Slobodskaya and E. S. Gasilevich, “Development of the method for determining the time of relaxation using a spectrophone. II. Elimination of instrument fase shifts,” Opt. Spektrosk. 8(5), 678–685 (1960).Google Scholar
  12. 12.
    V. Zeninary, B. A. Tikhomirov, Yu. N. Ponomarev, and D. Courtois, “Photoacoustic measurements of the vibrational relaxation of the selectively excited ozone (ν3) molecule in pure ozone and its binary mixtures with O2, N2, and noble gases,” J. Chem. Phys. 112(4), 1835–1843 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Kapitanov and B. A. Tikhomirov, “Pulse photoacoustic technique for the study of vibrational relaxation in gases,” Appl. Opt. 34(6), 969–972 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    A. B. Antipov, V. A. Kapitanov, and Yu. N. Ponomarev, “Determination of the relaxation time of the 401 N2O vibration with an optoacoustic spectrometer,” Opt. Spektrosk. 50(3), 563–565 (1981).Google Scholar
  15. 15.
    B. G. Ageev, O. Yu. Nikiforova, and Yu. N. Ponomarev, “Determination of the relaxation time of the 103 H2O vibration with an optoacoustic spectrometer and a ruby laser,” Quantum. Electron. 13(3), 361–363 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    A. B. Tikhomirov and B. A. Tikhomirov, “Optimization of beam size of the pulsed laser in the photoacoustic measurements of aerosol absoption coefficient,” Opt. Atmosf. Okeana 24(4), 331–334 (2011).Google Scholar
  17. 17.
    D. S. Dzhidzhoev, V. K. Popov, V. T. Platonenko, and A. V. Chugunov, “Dependences of the parameters of an optoacoustic signal on the radius of the excited region,” Quantum. Electron. 14(2), 285 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44(4), 267–272 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    M. Margottin-Maclou, L. Doyennette, and L. Henry, “Relaxation of vibrational energy in CO, HCl, CO2, and NO2,” Appl. Opt. 10(8), 1768–1780 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    H. G. Heard, Laser Parameter Measurements Handbook (John Wiley & Sons, Inc, New York, 1968).Google Scholar
  21. 21.
    J. Finzi, F. E. Hovis, V. N. Panfilov, P. Hess, and C. B. Moore, “Vibrational relaxation of water vapor,” J. Chem. Phys. 67(9), 4053–4061 (1977).ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    J. Simons, “Diffusion of optically pumped molecules as a tool for probing the interaction of excited species,” Chem. Phys. Lett. 14(5), 586–591 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • B. A. Tikhomirov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations