Atmospheric and Oceanic Optics

, Volume 27, Issue 1, pp 24–32 | Cite as

Variations in aerosol microphysical parameters of the surface air layer in the “ocean-continent” transitional zone

  • K. A. Shmirko
  • A. N. Pavlov
  • S. Yu. Stolyarchuk
  • O. A. Bukin
  • A. A. Bobrikov
  • V. V. Pol’kin
  • Nguen Suan An’
Optics of Clusters, Aerosols, and Hydrosoles


This article provides the study results of variations in microphysical parameters of atmospheric aerosol in the surface layer of the “ocean-continent” transitional zone. The analyzed data were obtained during the period from August 1, 2010, to December 31, 2012, at the lidar station of the Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences (IACP FEB RAS), Vladivostok. Mass concentrations of fine aerosol and black carbon and particle size distribution functions typical for the region under study were obtained. In winter, with strong north winds and low relative humidity (50 ± 20)%, dry continental aerosol predominates, and values of the aerosol number density N a are increased, with maxima in the range from 100 and 120 cm−3. In summer, when south winds prevail and the relative humidity attains 98%, sea aerosol predominates and N a took values from (5 ± 5) cm−3 in June, 2011, to (44 ± 20) cm−3 in July, 2011. Periodicity of diurnal variations in the mass and number density of atmospheric aerosol and black carbon are pronounced the best in winter. The modal radius of fine aerosol particles is from 0.275 μm in summer to 0.375 μm in winter, and of coarse aerosol particles, from 1.05 to 2.5 μm, respectively. Seasonal and diurnal variations in the mass concentration of black carbon M BC are the most stable; its values vary from (0.5 ± 0.5) μg/m3 in the early summer to (3.0 ± 2.0) μg/m3 in January–February. It has been ascertained that diurnal variations in M BC in Siberia (Tomsk) and in the “ocean-continent” transitional zone (Vladivostok) are similar in shape, but the amplitude of variations is higher in the latter case and is maximal in winter.


Black Carbon Diurnal Variation Aerosol Particle Aerosol Optical Depth Transitional Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Sakerin, A. N. Pavlov, O. A. Bukin, D. M. Kabanov, G. I. Kornienko, V. V. Pol’kin, S. Yu. Stolyarchuk, Yu. S. Turchinovich, K. A. Shmirko, and A. Yu. Maior, “Results of an integrated aerosol experiment in the continent-ocean transition zone (Primorye and the Sea of Japan); Part 1: Variations of atmospheric aerosol optical depth and vertical profiles,” Atmos. Ocean. Opt. 24(1), 64–73 (2011).CrossRefGoogle Scholar
  2. 2.
    A. V. Afonin, M. V. Engel’, A. Yu. Maior, A. N. Pavlov, S. Yu. Stolyarchuk, K. A. Shmirko, and O. A. Bukin, “Results of an integrated aerosol experiment in the continent-ocean transition zone (Primorye and the Sea of Japan). Part 2. Analysis of spatiotemporal variations of aerosol characteristics according to satellite data and lidar measurements,” Atmos. Ocean. Opt. 24(2), 198–201 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Mishchenko, I. Geogdzhayev, B. Cairns, W. Rossow, and A. Lacis, “Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results,” Appl. Opt. 38, 7325–7341 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    M. Xu, C.-P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. Zhang, “Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed,” J. Geophys. Res. 111, D24111, doi: 10.1029/2006JD007337 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    Y. F. Luo, D. R. Lu, X. J. Zhou, W. L. Li, and Q. He, “Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years,” J. Geophys. Res., D 106(13), 14,501–14,513 (2001).ADSGoogle Scholar
  6. 6.
    M. Wild, H. Gilgen, and A. Roesch, “From dimming to brightening: decadal changes in solar radiation at Earth’s surface,” Science 308, 847–850 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    K. Lau, V. Ramanathan, G. Wu, Z. Li, S. Tsay, C. Hsu, R. Sikka, B. Holben, D. Lu, G. Tartari, M. Chin, R. Koudelova, H. Chen, Y. Ma, and I. Huang, “The joint aerosol-monsoon experiment—a new challenge for monsoon climate research,” Bull. Amer. Meteorol. Soc. 89(3), 369–383 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    K. Lau and K. Kim, “Observational relationships between aerosol and Asian monsoon rainfall, and circulation,” Geophys. Rev. Lett. 33(21), L21810 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Diurnal behavior of the submicron aerosol and black carbon in the ground layer,” Opt. Atmosf. Okeana 23(7), 561–569 (2010).Google Scholar
  10. 10.
    V. V. Pol’kin, V. S. Kozlov, Yu. S. Turchinovich, and V. P. Shmargunov, “Comparative analysis of microphysical aerosol characteristics in marine and coastal regions of Primorie (Far East),” Opt. Atmosf. Okeana 24(6), 538–546 (2011).Google Scholar
  11. 11.
    G. I. Gorchakov, A. S. Emilenko, and M. A. Sviridenkov, “One-parameter model of surface aerosol” Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 17(1), 39–49 (1981).Google Scholar
  12. 12.
    V. S. Kozlov, V. P. Shmargunov, and V. V. Pol’kin, “Spectrophotometers for the study of parameters of light absorption by aerosol particles,” Pribory Tekhn. Eksperim, No. 5, 155–157 (2008).Google Scholar
  13. 13.
  14. 14.
    G. V. Rozenberg, “Optical researches of atmospheric aerosol,” Usp. Fiz. Nauk 95(1), 159–208 (1968).Google Scholar
  15. 15.
    V. V. Pol’kin, “Temporal variability of microstructural parameters of near-ground aerosol. Part 1. Annual and seasonal variability,” Proc. SPIE—Int. Soc. Opt. Eng. 5743, 359–364 (2004).Google Scholar
  16. 16.
    V. V. Pol’kin, “Temporal variability of microstructural parameters of near-ground aerosol. Part 2. Diurnal behavior in different seasons,” Proc. SPIE—Int. Soc. Opt. Eng. 5743, 365–371 (2004).Google Scholar
  17. 17.
    M. V. Panchenko and V. V. Pol’kin, “Annual behavior of number densities of fine and coarse fractions of atmospheric aerosol,” in Proc. of the IX Joint Int. Sympos. “Atmospheric and Ocean Optics. Atmospheric Physics”, Tomsk, July 2–5, 2002 (Publishing House of IAO SB RAS, Tomsk, 2002), p. 98.Google Scholar
  18. 18.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Time content variations of submicron aerosol and soot in the near-ground layer of the West Siberia atmosphere,” Atmos. Ocean. Opt. 20(12), 987–990 (2007).Google Scholar
  19. 19.
    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Forecast of variations in ozone and aerosol concentrations based on the forecast for the 24th solar cycle,” Opt. Atmosf. Okeana 25(9), 778–783 (2012).Google Scholar
  20. 20.
    M. V. Panchenko, S. A. Terpugova, T. A. Dokukina, V. V. Pol’kin, and E. P. Yausheva, “Multiyear variations in aerosol condensation activity in Tomsk,” Atmos. Ocean. Opt. 25(4), 251–255 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • K. A. Shmirko
    • 1
  • A. N. Pavlov
    • 1
  • S. Yu. Stolyarchuk
    • 1
  • O. A. Bukin
    • 2
  • A. A. Bobrikov
    • 2
  • V. V. Pol’kin
    • 3
  • Nguen Suan An’
    • 4
  1. 1.Institute of Automation and Control Processes, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Admiral G.I. Nevelskoi Maritime State UniversityVladivostokRussia
  3. 3.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  4. 4.Institute of Geophysics (IGP)Cau Giay, HanoiVietnam

Personalised recommendations