Advertisement

Atmospheric and Oceanic Optics

, Volume 27, Issue 1, pp 88–99 | Cite as

Measurement technique of turbulence characteristics from jitter of astronomical images onboard an aircraft: Part 2. Accounting for photoreceiver response time

  • V. V. Nosov
  • V. P. Lukin
Optical Instrumentation
  • 36 Downloads

Abstract

The main theoretical relations required by the technique for measuring turbulence characteristics from the jitter of astronomical images onboard a flying aircraft are derived. Monostatic and differential (bistatic) receivers are compared. The analysis does not repeat the analysis of signals and errors of the common differential method. The technique suggested supposes operation from a moving carrier. It is shown that the maximum deviation of the bistatic response function from the monostatic response function is observed when the velocity vectors of the carrier and the channel spacing are collinear. The effects of the turbulence outer scale, the vector carrier velocity, sampling frequencies, and other parameters of the instrument scheme are estimated. In particular, it is found that the typical correlation time in a bistatic differential receiver depends on the transportation time of turbulent inhomogeneities between two receiving channels until the distance between them is less than the turbulence outer scale.

Keywords

Turbulence Characteristic Turbulent Atmosphere Outer Scale Time Correlation Function Astronomical Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    A. I. Kon and V. I. Tatarskii, “Parameter fluctuations of a space-limited light beam in a turbulent atmosphere,” Radiophys. Quant. Electron. 8(5), 617–620 (1965).ADSGoogle Scholar
  4. 4.
    V. L. Mironov, V. V. Nosov, and B. N. Chen, “Quivering of optical images of laser sources in a turbulent atmosphere,” Radiophys. Quant. Electron. 23(4), 319–325 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Lukin, “Optical measurements of the outer scale of the atmospheric turbulence,” Atmos. Ocean. Opt. 5(4), 229–242 (1992).Google Scholar
  6. 6.
    V. P. Lukin, “Investigation of some pecularities in the structure of large-scale atmospheric turbulence,” Atmos. Ocean. Opt. 5(12), 834–840 (1992).Google Scholar
  7. 7.
    S. S. Khmelevtsov and R. Sh. Tsvyk, “Fluctuations of intensity and arrival angles for light waves in spatially-limited collimated beams in a turbulent atmosphere,” Rus. Phys. J. 16(9), 1280–1283 (1973).Google Scholar
  8. 8.
    V. P. Aksenov, A. V. Alekseev, V. A. Banakh, V. M. Bul- dakov, V. V. Veretennikov, A. F. Zhukov, M. V. Kabanov, G. M. Krekov, Yu. S. Makushkin, V. L. Mironov, A. A. Mitsel’, N. F. Nelyubin, V. V. Nosov, Yu. N. Pono- marev, Yu. A. Pkhalagov, and K. M. Firsov, Influence of the Atmosphere on Laser Radiation Propagation, Ed. by V.E. Zuev and V.V. Nosov (Publishing House of Siberian Brach of the Academy of Sciences of USSR, Tomsk, 1987) [in Russian].Google Scholar
  9. 9.
    V. L. Mironov, V. V. Nosov, and B. N. Chen, “Correlation of the shifts of optical images of laser sources in a turbulent atmosphere,” Radiophys. Quant. Electron. 24(12), 985–988 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    V. L. Mironov, V. V. Nosov, and B. N. Chen, “Frequency spectra of jitter of optical images of laser sources in a turbulent atmosphere,” in Proc. of the II All-Union Workshop on Atmospheric Optics (Izd-vo SO AN SSSR, Tomsk, 1980), pp. 101–103 [in Russian].Google Scholar
  11. 11.
    V. L. Mironov, Laser Beam Propagation in a Turbulent Atmosphere (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  12. 12.
    M. S. Belen’kii and V. L. Mironov, “Mean diffracted rays of an optical beam in a turbulent medium,” J. Opt. Soc. Amer. 70(1), 159–163 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    V. U. Zavorotnyi, V. I. Klyatskin, and V. I. Tatarskii, “Strong fluctuations of the intensity of electromagnetic waves in randomly inhomogeneous media,” JETP 73(2), 252–260 (1977).ADSGoogle Scholar
  14. 14.
    V. P. Aksenov, V. A. Banakh, and B. N. Chen, “Influence of diffraction on determination of atmospheric refraction angle during optical location,” Opt. Atmosf. 1(1), 53–57 (1988).Google Scholar
  15. 15.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  16. 16.
    A. I. Kon, V. L. Mironov, and V. V. Nosov, “Fluctuations of the centers of gravity of light beams in a turbulent atmosphere,” Radiophys. Quant. Electron. 17(10), 1147–1155 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965), Vol. 2 [in Russian].Google Scholar
  18. 18.
    V. I. Tatarskii, Light propagation in a medium with random refractive index inhomogeneities in the Markov random process approximation,” JETP 29(6), 1133–1138 (1969).ADSGoogle Scholar
  19. 19.
    V. I. Klyatskin, Stochastic Equations and Waves in Randomly Nonuniform Media (Nauka, Moscow, 1980) [in Russian].Google Scholar
  20. 20.
    V. L. Mironov and V. V. Nosov, “Concerning the effect of the external scale of atmospheric turbulence on the space correlation of random displacements of light beams,” Radiophys. Quant. Electron. 17(2), 187–190 (1974).ADSCrossRefGoogle Scholar
  21. 21.
    V. L. Mironov and V. V. Nosov, “On the theory of spatially limited light beam displacements in a randomly in homogeneous medium,” J. Opt. Soc. Amer. 67(8), 1073–1080 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    E. I. Gel’fer, “Correlation of displacement of point-source images,” Radiophys. Quant. Electron. 17(8), 905–908 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    V. P. Lukin, Adaptive Atmospheric Optics (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  24. 24.
    V. P. Lukin, E. V. Nosov, and B. V. Fortes, “The efficient outer scale of atmospheric turbulence,” Atmos. Ocean. Opt. 10(2), 100–106 (1997).Google Scholar
  25. 25.
    V. V. Nosov, V. P. Lukin, and E. V. Nosov, “Influence of the underlying terrain on the jitter of astronomic images,” Atmos. Ocean. Opt. 17(4), 321–328 (2004).Google Scholar
  26. 26.
    M. S. Belen’kii, G. O. Zadde, B. C. Komarov, G. M. Krekov, V. V. Nosov, A. A. Pershin, V. I. Khamarin, and V. G. Tsverava, An optical Model of the Atmosphere, Ed. by V.E. Zuev and V.V. Nosova (Publishing House of Siberian Branch of the Academy of Sciences of USSR, Tomsk, 1987) [in Russian].Google Scholar
  27. 27.
    V. V. Nosov and V. P. Lukin, “Method of measurements of turbulence characteristics from jitter of astronomical images from onboard an aircraft. Part 1. Main ergodic theorems,” Atmos. Ocean. Opt. 27(1), 75–87 (2014).Google Scholar
  28. 28.
    A. Tokovinin, “From differential image motion to seeing,” Publications of the Astronomical Society of the Pacific 114, 1156–1166 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, L. N. Lavrinova, and V. P. Lukin, “Differential optical meter of the parameters of atmospheric turbulence,” Atmos. Ocean. Opt. 11(11), 1046–1050 (1998).Google Scholar
  30. 30.
    V. P. Lukin, “Differential turbulence meter,” Fotonika, No. 5, 52–59 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Nosov
    • 1
  • V. P. Lukin
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric OpticsTomskRussia

Personalised recommendations