Atmospheric and Oceanic Optics

, Volume 27, Issue 1, pp 71–74 | Cite as

Photoacoustic measurements of UV laser Pulse (266 nm) absorption in mixtures of water vapor with nitrogen

  • A. N. Kuryak
  • M. M. Makogon
  • Yu. N. Ponomarev
  • B. A. Tikhomirov
Optical Instrumentation


Results of photoacoustic measurements of absorption of 266 nm-laser pulses (the fourth harmonics of a YAG laser) by mixtures of water vapor and nitrogen, depending on the radiation intensity (0.5–10 MW cm−2) and H2O partial pressure (0–10 mbar), are presented. It is shown that the linear absorption (in the given range of intensities) increases with H2O partial pressure in a range 0–5 mbar and remains almost stable in a range 5–10 mbar exceeding the absorption in the pure nitrogen only by two orders of magnitude.


Laser Pulse Energy Water Vapor Absorption Water Vapor Partial Pressure Photoacoustic Measurement Wide Band Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Klimkin and V. N. Fedorishchev, “Laser induced continuum band of atmospheric fluorescence,” Opt. Atmosf. 1(7), 72–76 (1988).Google Scholar
  2. 2.
    V. M. Klimkin and V. N. Fedorishchev, “Laser induced fluorescence of N2O vapors,” Opt. Atmosf. 1(8), 26–30 (1988).Google Scholar
  3. 3.
    V. M. Klimkin and V. N. Fedorishchev, “New atmospheric absorption band in the UV spectral range,” Opt. Atmosf. 2(2), 220–221 (1989).Google Scholar
  4. 4.
    S. F. Luk’yanenko, T. I. Novakovskaya, and I. N. Potap- kin, “Study of the N2O vapor absorption spectrum in the 270–330 nm region,” Opt. Atmosf. 2(7), 706–709 (1989).Google Scholar
  5. 5.
    V. M. Klimkin, S. F. Luk’yanenko, I. N. Potapkin, and V. N. Fedorishchev, “Study of the N2O vapor fluorescence excitation function,” Opt. Atmosf. 2(3), 322–323 (1989).Google Scholar
  6. 6.
    S. F. Luk’yanenko, T. I. Novakovskaya, and I. N. Potapkin, “Study of N2O vapor absorption in the 265…350 nm region using a KSVU-12M-based spectrophotometer,” Opt. Atmosf. 3(11), 1190–1192 (1990).Google Scholar
  7. 7.
    Yu. N. Ponomarev and I. S. Tyryshkin, “Spectrophotometric complex for measuring absorption of laser radiation by molecular gases in the IR, visible, and UV regions,” Atmos. Ocean. Opt. 6(4), 224–228 (1993).Google Scholar
  8. 8.
    B. A. Tikhomirov, V. O. Troitskii, V. A. Kapitanov, G. S. Evtuschenko, and Yu. N. Ponomarev, “Photoacoustic measurements of water vapor absorption coefficient in UV spectral region,” Acta Physica Sinica 7(3), 190–195 (1998).ADSGoogle Scholar
  9. 9.
    M. M. Makogon and A. N. Kuryak, “Fluorescence of the atmosphere under the exposure to fifth harmonic of Nd:YAG laser (212.8 nm),” Atmos. Ocean. Opt. 14(10), 874–876 (2001).Google Scholar
  10. 10.
    N. A. Zvereva, “Theoretical description of the photodissociative spectrum of monomer and dimer water,” Opt. Spektrosk. 91(1), 1–5 (2001).CrossRefGoogle Scholar
  11. 11.
    A. D. Bykov, S. S. Voronina, and M. M. Makogon, “Estimation of absorption of 0.27-μm wavelength radiation by atmospheric water vapor,” Atmos. Ocean. Opt. 16(4), 288–291 (2003).Google Scholar
  12. 12.
    A. D. Bykov, S. S. Voronina, and M. M. Makogon, “Water vapor absorption band nearby 270 nm: intensity borrowing mechanism,” Atmos. Ocean. Opt. 16(11), 912–915 (2003).Google Scholar
  13. 13.
    A. D. Bykov, S. S. Voronina, and M. M. Makogon, “The water vapor 0.27 mkm absorption band: Hypothesis of band strengthening,” Proc. SPIE 5311, 72–76 (2003).Google Scholar
  14. 14.
    M. M. Makogon, “Spectral characteristics of water vapor in UV spectral region,” Atmos. Ocean. Opt. 14(9), 696–706 (2001).Google Scholar
  15. 15.
    M. M. Makogon, Yu. N. Ponomarev, and B. A. Tikhomirov, “The problem of water vapor absorption in the UV spectral range,” Atmos. Ocean. Opt. 26(1), 45–49 (2013).CrossRefGoogle Scholar
  16. 16.
    A. B. Tikhomirov, K. M. Firsov, V. S. Kozlov, M. V. Panchenko, Yu. N. Ponomarev, and B. A. Tikhomirov, “Investigation of spectral dependence of shortwave radiation absorption by ambient aerosol using time-resolved photoacoustic technique,” Opt. Eng. 4(7), 071203–1 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Kiselev, Yu. N. Ponomarev, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour,” Quantum Electron. 41(11), 976–980 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    A. B. Antipov, V. A. Kapitanov, Yu. N. Ponomarev, and V. A. Sapozhnikova, PA Method in Laser Spectroscopy of Molecular Gases (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  19. 19.
    A. B. Tikhomirov, I. V. Ptashnik, and B. A. Tikhomirov, “Measurement of the continuum absorption coefficient of water vapor near 14400 cm−1 (0.694 μm),” Opt. Spectrosc. 101(1), 80–89 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    V. P. Zharov and V. S. Letokhov, Laser PA Spectroscopy (Nauka, Moscow, 1984) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. N. Kuryak
    • 1
  • M. M. Makogon
    • 1
  • Yu. N. Ponomarev
    • 1
  • B. A. Tikhomirov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations