Skip to main content
Log in

Internal gravity waves in the troposphere

  • Optical Waves Propagation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A technique for passive space sensing of the atmosphere in infrared and microwave ranges is discussed. The result of analysis of the sensing is the discovery of internal gravity waves (IGW) in the troposphere. It is possible now to investigate experimentally the infrasonic IGW with frequencies lower than 4 × 10−5 Hz. Waves, looking like reflections of IGW, were found in the initial part of the tropopause and were named mirror waves (MW). The conditions for MW formation are discussed. IGW and MW have been simulated numerically. Meteorological events, explosives, and seismic activity may excite IGW and MW. Diagrams of IGW and MW during the Japan earthquake of 2011 are shown. The pre-earthquake region with a high seismic activity is found from which infrared acoustic waves entered the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Kashkin and E. V. Petrov, “Estimate of tropospheric delay of GLONASS and GPS signals using ATOVS satellite data on vertical atmospheric profiles,” Izv. Vuzov, Fiz., No. 9-2 (2010).

    Google Scholar 

  2. V. B. Kashkin, K. S. Simonov, and A. S. Grigor’ev, “Space monitoring of atmospheric responses to strong earthquakes detected by space-borne means for remote sensing of the Earth,” Inzh. Ekol., No. 2, 38–54 (2011).

    Google Scholar 

  3. V. B. Kashkin, A. A. Romanov, A. S. Grigor’ev, and A. A. Baskova, “Tropospheric effects of eaqrthquakes in Tuva observed from artificial satellites,” Zh. Sib. Federal. Univ., Tekhn. Tekhnol., No. 2, 200–228 (2012).

    Google Scholar 

  4. L. T. Matveev, Course of General Meteorology. Atmospheric Physics (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  5. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  6. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  7. N. N. Lavrent’eva, Doctoral Dissertation in Mathematical Physics (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, 2005).

  8. G. Goodrum, http://www2.ncdc.noaa.gov/docs/klm/

  9. URL: ncdc.noaa.gov/docs/klm/index.htm

  10. URL: http://scanex.ru/ru/stations

  11. www.metoffice.gov.uk/research/interproj/nwpsaf/aapp/

  12. http://cimss.ssec.wisc.edu/opsats/polar/iapp/

  13. J. Li, W. Wolf, and P. Menzel, “Global soundings of the atmosphere from TOVS measurements: the algorithm and validation,” J. Appl. Meteorol. 39(8), 1248–1268 (2000).

    Article  ADS  Google Scholar 

  14. M.-H. Ahn, M.-J. Kim, Ch.-Y. Chung, and A.-S. Suh, “Operational implementation of the ATOVS processing procedure in KMA and its validation,” Adv. Atmos. Sci. 20(3), 398–414 (2003).

    Article  Google Scholar 

  15. V. V. Belov, V. E. Beloborodov, D. M. Kabanov, S. M. Ogreb, K. T. Piskunov, S. M. Sakerin, and M. V. Tarasenkov, “On a possibility of forecasting the aerosol optical thickness of the atmosphere based on the measurements of a Cimel CE-318 radiometer,” Opt. Atmosf. Okeana 25(1), 80–86 (2012).

    Google Scholar 

  16. S. V. Afonin, “An appraisal of the method of AOD retrieval over land according to MODIS satellite measurements in IR spectral range,” Atmos. Ocean. Opt. 24(6), 584–586 (2011).

    Article  Google Scholar 

  17. http://www.arl.noaa.gov/ready/cmet.html

  18. E. Gossard and W. Hooke, Waves in Atmosphere (Elsevier, Amsterdam, 1975).

    Google Scholar 

  19. E. L. Afraimovich and N. P. Perevalova, GPS Monitoring of the Earth’s Upper Atmosphere (NTsRVKh, Irkutsk, 2006) [in Russian].

    Google Scholar 

  20. M. B. Gokhberg and S. L. Shalimov, “Lithosphereionosphere correlation and its simulation,” http://elpub.wdcb.ru/journals/rjes/

  21. http://rp5.ru

  22. V. V. Shuleikin, Physics of the Sea (Nauka, Moscow, 1090) [in Russian].

    Google Scholar 

  23. G. S. Golitsyn and V. I. Klyatskin, “Fluctuations of the Earth’s atmosphere caused by movements of Earth’s surface,” Izv. AN SSSR, Fiz. Atmosf. Okeana 3(10), 1044–1052 (1967).

    Google Scholar 

  24. G. I. Grigor’ev, “Acoustic-gravity waves in the Earth’s atmosphere (review),” Radiophys. Quant. Electron. 42(1), 1–21 (1999).

    Article  ADS  Google Scholar 

  25. A. L. Sobisevich and V. A. Gusev, “Low-frequency wave processes in geospheres preceding strong seismic events,” in Extreme Nature Events: Vol. 1. Estimation and Ways to Reduce Negative Consequences of Extreme Natural Events (IFZ RAN, Moscow, 2010), pp. 65–78 [in Russian].

    Google Scholar 

  26. R. R. Akhmedov, Candidate’s Dissertation in Mathematical Physics (Moscow State University, Moscow, 2004).

  27. C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38(11), 1441–1481 (1960).

    Article  ADS  Google Scholar 

  28. B. E. Bryunelli and A. A. Namgaladze, Physics of Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  29. A. D. Danilov, E. S. Kazimirovskii, G. V. Vergasova, and G. Ya. Khachikyan, Meteorological Effects in the Ionosphere (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  30. G. S. Golitsyn and N. N. Romanova, “Vertical propagation of acoustic waves in an atmosphere with altitude-variable viscosity,” Izv. AN SSSR, Fiz. Atmosf. Okeana 4(2), 210–214 (1968).

    Google Scholar 

  31. G. I. Grigor’ev and O. N. Savina, “Acoustic-gravity waves in the atmosphere with a piecewise-linear temperature profile,” Radiophys. Quant. Electron. 46(8), 664–670 (2002).

    Google Scholar 

  32. V. V. Bulatov and Yu. V. Vladimirov, Internal Gravity Waves in Inhomogeneous Media (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  33. http://www.nature.com/nature/Published online 19 May 2011, Nature, doi: 10.1038/news, 2011.305

  34. G. S. Golitsyn, N. N. Romanova, and E. P. Chunchuzov, “About generation of internal waves in the atmosphere due to sea disturbance,” Izv. AN SSSR, Fiz. Atmosf. Okeana 12(6), 669–673 (1976).

    Google Scholar 

  35. A. N. Besedina and N. V. Kabychenko, “Study of seismic waves in long-wave spectrum part,” Tr. MFTI 3(3), 51–55 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.B. Kashkin, 2014, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashkin, V.B. Internal gravity waves in the troposphere. Atmos Ocean Opt 27, 1–9 (2014). https://doi.org/10.1134/S1024856014010059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014010059

Keywords

Navigation