Skip to main content

Influence of a nonstationary electric field on an array of weakly interacting carbon nanotubes

Abstract

The influence of a nonstationary electric field on a system of weakly interacting carbon nanotubes is considered. An equation for the current density is derived, which is a spatial second-order operator-difference equation, where the “grid nodes” coincide with the location of graphene atoms. It is suggested that the difference operator be replaced by a Laplacian in the two-dimensional case. The results allow us to consider the effect of the generation of millimeter radiation.

This is a preview of subscription content, access via your institution.

References

  1. N. R. Sadykov and N. A. Skorkin, “Influence of Nonstationary Electric Field on Carbon Nanotubes,” Atmos. Ocean. Opt. 25(5), 372–377 (2012).

    Article  Google Scholar 

  2. M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic Wave Propagation in an Almost Circular Bundle of Closely Packed Metallic Carbon Nanotube,” Phys. Rev., B 76(24), 155407(1–9) (2007).

    ADS  Google Scholar 

  3. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electrodynamics of Carbon Nanotubes: Dynamic Conductivity, Impedance Boundary Conditions and Surface Wave Propagation,” Phys. Rev., B 60(24), 17136–17149 (1999).

    ADS  Article  Google Scholar 

  4. S. A. Maksimenko and G. Ya. Slepyan, “Electrodynamics of Carbon Nanotubes,” J. Communic. Technol. Electronics 47(3), 235–253 (2002).

    Google Scholar 

  5. S. A. Maksimenko and G. Ya. Slepyan, “Electromagnetic Properties of Nanostructures,” Vestnik of the Foundation for Basic Research, No. 4, 92–113 (2006).

    Google Scholar 

  6. M. J. Hagmann, “Isolated Carbon Nanotubes as High-Impedance Transmission Lines for Microwave through Terahertz Frequencies,” IEEE Trans. Nanotechnol. 4(2), 289–296 (2005).

    ADS  Article  Google Scholar 

  7. K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon Nanotube as a Cherenkov-Type Light Emitter and Free Electron Laser,” Phys. Rev., B 79, 125408 (1–12) (2009).

    ADS  Article  Google Scholar 

  8. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Theory of Optical Scattering by Achiral Carbon Nanotubes and their Potential as Optical Nanoantennas,” Phys. Rev., B 73, 195416 (1-11) (2006).

    ADS  Article  Google Scholar 

  9. N. R. Sadykov and M. O. Sadykova, “Ultrashort Pulse Propagation in Nonlinear Dispersive Media with Absorption,” Atmos. Ocean. Opt. 11(2–3), 198–202 (1998).

    Google Scholar 

  10. N. R. Sadykov, “Evolution of an Envelope of Subpicosecond Pulses,” Optika Spektroskopiya 86(2), 307–310 (1999).

    Google Scholar 

  11. N. R. Sadykov, “Evolution of Solitons in Single-Mode Optical Fibers with Nonshifted Dispersion,” Opt. Spectrosc. 90(5), 731–724 (2001).

    ADS  Article  Google Scholar 

  12. M. O. Sadykova, N. R. Sadykov, and I. E. Parshukov, “Simulation of Transmission Properties of Optical Bunches,” Izv. Chelyab. Nauch. Tsentra, No. 4, 15–20 (2005).

    Google Scholar 

  13. N. R. Sadykov, M. O. Sadykova, I. E. Parshukov, and A. N. Afanas’ev, “Derivation of the System of Evolutionary Equations for Optical Bundles,” Atmos. Ocean. Opt. 19(2–3), 223–228 (2006).

    Google Scholar 

  14. N. R. Sadykov, “Derivation of the System of Evolution Equations in Optical Filaments,” Opt. Spectrosc. 101(6), 957–961 (2006).

    ADS  Article  Google Scholar 

  15. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-Photon Coupling and the Electrical Conductivity of Fullerene Nanotubules,” Phys. Rev., B 48(15), 11385–11389 (1993).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.R. Sadykov, N.A. Skorkin, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sadykov, N.R., Skorkin, N.A. Influence of a nonstationary electric field on an array of weakly interacting carbon nanotubes. Atmos Ocean Opt 26, 532–538 (2013). https://doi.org/10.1134/S1024856013060122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013060122

Keywords

  • Oceanic Optic
  • Surface Current Density
  • Graphene Atom
  • Zigzag Type
  • Electrody Namics