Skip to main content

Accounting for humidity of exhaled air for retrieving gaseous biomarkers


In this work, we use numerical simulation to estimate errors of the differential-absorption retrieval of concentrations of such gaseous biomarkers as CH4, CO, NH3, N2O, C2H6, and H2S from the absorption spectra of a three-component gas mixture in the 2–4 μm spectral region. The gas mixture is supposed to simulate exhaled air. The absorption spectra were calculated with a resolution of 2 cm−1 using the HITRAN database. The influence of subtraction of the water vapor absorption spectrum from the simulated spectrum on the retrieval error is studied. The water vapor concentration in the mixture in calculations of its contribution to the spectrum was determined from the absorption measured at 3800 cm−1.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. N. Bingi, E. V. Stepanov, A. G. Chuchalin, V. A. Milyaev, K. L. Moskalenko, Yu. A. Shulagin, and L. R. Yangurazova, “Highly Sensitive Analysis of NO, NH3, and CH4 in Exhaled Air Using Tunable Diode Lasers,” Trudy Inst. Obshch. Fiz., Ross. Akad. Nauk 61, 189–210 (2005).

    Google Scholar 

  2. 2.

    S. I. Lukash, “Problems of Diagnostics of Some Diseases by Exhaled Air,” Komp’yuterni Zasobi, Merezhi ta Sistemi, No. 9, 62–71 (2010).

    Google Scholar 

  3. 3.

    E. V. Stepanov and V. A. Milyaev, “Application of Tunable Diode Lasers for a Highly Sensitive Analysis of Gaseous Biomarkers in Exhaled Air,” Quant. Electron. 32(11), 987–992 (2002).

    ADS  Article  Google Scholar 

  4. 4.

    D. B. Kolker, R. V. Pustovalova, M. K. Starikova, A. I. Karapuzikov, A. A. Karapuzikov, O. M. Kuznetsov, and Yu. V. Kistenev, “Optical Parametric Oscillator within 2.4-4.3 μm Pumped with a Nanosecond Nd:YAG Laser,” Atmos. Ocean. Opt. 25(1), 77–81 (2012).

    Article  Google Scholar 

  5. 5.

    M. A. Watson, M. V. O’Connor, D. P. Shepherd, and D. C. Hanna, “Synchronously Pumped CdSe Optical Parametric Oscillator in the 9–10 μm Region,” Opt. Lett. 28(20), 1957–1959 (2003).

    ADS  Article  Google Scholar 

  6. 6.

    K. Yu. Osipov and V. A. Kapitanov, “Numerical Modeling of SF6 Photoacoustic Gas Analyzer in the Atmosphere with Frequency Modulation of Thermal Radiation,” Atmos. Ocean. Opt. 26(2), 149–153 (2013).

    Article  Google Scholar 

  7. 7.

    Yu. V. Kistenev, A. N. Kuryak, M. M. Makogon, and Yu. N. Ponomarev, “The System for Dehumidification of Samples in Laser Gas Analysis,” Atmos. Ocean. Opt. 25(1), 92–96 (2011).

    Article  Google Scholar 

  8. 8.

    L. S. Rothman, D. Jacquemart, A. Barbe, Benner D. Chris, M. Birk, L. R. Brown, M. R. Carleer, C. Chac-kerian, Jr., K. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, Auwera J. Vander, P. Varanasi, and G. Wagner, “The HITRAN 2004 Molecular Spectroscopic Database,” J. 2004 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 96(2), 139–204 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Met- sala, G. Johanson, and L. Halonen, “Background Levels of Hydrogen Cyanide in Human Breath Measured by Infrared Cavity Ring Down Spectroscopy,” Biomarkers 14(5), 285–291 (2009).

    Article  Google Scholar 

  10. 10.

  11. 11.

    Ch. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262, doi: 10.3390/s91008230 (2009).

    Article  Google Scholar 

  12. 12.

    D. Smith, P. Spanel, and S. Davies, “Trace Gases in Breath of Healthy Volunteers when Fasting and after a Protein-Calorie Meal: a Preliminary Study,” J. Appl. Physiol. 87(5), 1584–1588 (1999).

    Google Scholar 

  13. 13.

    D. N. Bakhmutov, I. G. Fedorov, and O. O. Yanush- evich,

  14. 14.

    A. Tangerman and E. G. Winkel, “Intra- and Extra-Oral Halitosis: Finding of a New Form of Extra-Oral Blood-Borne Halitosis Caused by Dimethyl Sulphide,” J. Clinical Periodontol. 34(9), 748–755 (2007).

    Article  Google Scholar 

  15. 15.

    I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water Vapour Self-Continuum and Water Dimers. 1. Analysis of Recent Work,” J. Quant. Spectrosc. Radiat. Transfer 112(8), 1286–1303 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water Vapor Self-Continuum Absorption in Near-Infrared Windows Derived from Laboratory Measurements,” J. Geophys. Res. 116, D16305 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water Vapour Foreign Continuum Absorption in Near-Infrared Windows from Laboratory Measurements,” Phil. Trans. Roy. Soc., A 370, 2557–2577 (2012).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. Yu. Nikiforova.

Additional information

Original Russian Text © O.Yu. Nikiforova, Yu.N. Ponomarev, A.I. Karapuzikov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nikiforova, O.Y., Ponomarev, Y.N. & Karapuzikov, A.I. Accounting for humidity of exhaled air for retrieving gaseous biomarkers. Atmos Ocean Opt 26, 550–555 (2013).

Download citation


  • Optical Parametric Oscillator
  • Water Vapor Absorption
  • Continuum Absorption
  • HITRAN Database
  • Gaseous Marker