Skip to main content

Estimates of the aerosol radiative forcing for three regions of World Ocean

Abstract

We present the results of numerical simulation of aerosol radiative forcing for three regions of the World Ocean: the coastal zone of Antarctica, the Sea of Japan, and the Sea of Darkness. The aerosol radiative forcing for separate regions of ocean was simulated using ship-based measurements of aerosol optical depth and atmospheric water vapor content. Data on the single scattering albedo and asymmetry factor of scattering phase function are presented according to model simulations (coastal zone of Antarctica: OPAC model) and multiyear observations at AERONET photometer stations (the Sea of Japan: Noto site; and the Sea of Darkness: Cape Verde site). The calculations showed that the cooling effect of aerosol over Sea of Japan/Sea of Darkness at the atmospheric boundaries increases by about an order of magnitude as compared to the clean atmosphere near Antarctica. At the same time, the daily average values of the aerosol radiative forcing vary as follows: from −2.3 (Antarctica) to −30.3/−32.6 W/m2 (Sea of Japan/Sea of Darkness) at the surface level and from −1.9 to −16.1/−18 W/m2 at the top of the atmosphere. The estimates obtained agree reasonably well with the results of other authors.

This is a preview of subscription content, access via your institution.

References

  1. K. Ya. Kondrat’ev, “Aerosol as a Climate-Forming Component of the Atmosphere. 2. Direct and Indirect Impact on Climate,” Atmos. Ocean. Opt. 15(4), 267–284 (2002).

    Google Scholar 

  2. K. Ya. Kondrat’ev, “Aerosol and Climate sTudies: Current State and Prospects. 3. Aerosol Radiative Forcing,” Atmos. Ocean. Opt. 19(7), 505–513 (2006).

    Google Scholar 

  3. J. Haywood and O. Boucher, “Estimates of the Direct and Indirect Radiative Forcing due to Tropospheric Aerosols: A Review,” Rev. Geophys. 38(4), 513–543 (2000).

    ADS  Article  Google Scholar 

  4. M. Zhou, H. Yu, R. Dickinson, O. Dubovik, and B. Holben, “A Normalized Description of the Direct Effect of Key Aerosol Types on Solar Radiation As Estimated from AERONET Aerosols and MODIS Albedo,” Geol. Soc. Am. Bull. 110, D19202 (2005).

    Google Scholar 

  5. H. Yu, Y. Kaufman, M. Chin, G. Feingold, L. Remer, T. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A Review of Measurement-Based Assessments of the Aerosol Direct Radiative Effect and Forcing,” Atmos. Chem. Phys., No. 6, 613–666 (2006).

    Google Scholar 

  6. W. D. Collins, Ph. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, C. T. Beck, and Ch. S. Zender, “Simulation of Aerosol Distributions and Radiative Forcing for INDOEX: Regional Climate Impacts,” J. Geophys. Res., D 107(19), 8028 (2002).

    ADS  Article  Google Scholar 

  7. O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Transmission of Atmospheric Column in the Visible and Near-IR Spectral Regions (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  8. S. M. Sakerin, D. M. Kabanov, A. V. Smirnov, and B. N. Holben, “Aerosol Optical Depth of the Atmosphere Over Ocean in the Wavelength Range 0.37–4 μM,” Int. J. Remote Sens. 29(9) (2008).

    Google Scholar 

  9. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical Properties of Atmospheric Aerosol in Maritime Environments,” J. Atmos. Sci. 59(3) Part 1, 501–523 (2002).

    ADS  Article  Google Scholar 

  10. A. Smirnov, B. N. Holben, I. Slutsker, D. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin, A. Macke, P. Croot, G. Zibordi, P. Quinn, J. Sciare, S. Kinne, M. Harvey, T. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J. Goes, D. A. Seigel, P. Larouche, V. F. Radionov, P. Goloub, K. Krishnamoorthy, R. Matarrese, L. Robertson, and F. Jourdin, “Maritime Aerosol Network As a Component of Aerosol Robotic Network,” J. Geophys. Res. 114, D06204 (2009).

    ADS  Article  Google Scholar 

  11. A. Smirnov, B. N. Holben, D. M. Giles, I. Slutsker, N.T. O’Neill, T. F. Eck, A. Macke, P. Croot, Y. Courcoux, S. M. Sakerin, T. J. Smyth, T. Zielinski, G. Zibordi, J. I. Goes, M. Harvey, P. K. Quinn, N. B. Nelson, V. F. Radionov, C. M. Duarte, R. Losno, J. Sciare, K. Voss, S. Kinne, N. R. Nalli, E. Joseph, Moorthy K. Krishna, D. Covert, S. K. Gulev, G. Milinevsky, P. Larouche, S. Belanger, E. Horne, M. Chin, L. A. Remer, R. A. Kahn, J. S. Reid, M. Schulz, C. L. Heald, J. Zhang, K. Lapina, R. G. Kleidman, J. Griesfeller, B. J. Gaitley, Q. Tan, and T. L. Diehl, “Maritime Aerosol Network As a Component of AERONET-First Results and Comparison with Global Aerosol Models and Satellite Retrievals,” Atmos. Measur. Techn., No. 4, 583–597 (2011).

    Google Scholar 

  12. S. M. Sakerin and D. M. Kabanov, “Spatial Distribution of an Aerosol Component of Atmospheric Transmittance over the Atlantic Ocean,” Atmos. Ocean. Opt. 12(2), 93–98 (1999).

    Google Scholar 

  13. S. M. Sakerin and D. M. Kabanov, “Spatial Inhomogeneities and the Spectral Behavior of Atmospheric Aerosol Optical Depth over the Atlantic Ocean,” J. Atmos. Sci. 59(3), Part 1, 484–500 (2002).

    ADS  Article  Google Scholar 

  14. D. M. Kabanov and S. M. Sakerin, “Transmission of the Atmosphere over the Atlantic Ocean. Part 1. Spatial Inhomogeneities of the Transmission,” Atmos. Ocean. Opt. 13(8), 657–663 (2000).

    Google Scholar 

  15. S. M. Sakerin, A. N. Pavlov, O. A. Bukin, D. M. Kabanov, G. I. Kornienko, V. V. Pol’kin, S. Yu. Stolyarchuk, Yu. S. Turchinovich, K. A. Shmirko, and A. Yu. Mayor, “Results of an Integrated Aerosol Experiment in the Continent-Ocean Transition Zone (Primorye and the Sea of Japan); Part 1: Variations of Atmospheric Aerosol Optical Depth and Vertical Profiles,” Atmos. Ocean. Opt. 24(1), 64–73 (2011).

    Article  Google Scholar 

  16. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

    Article  Google Scholar 

  17. O. T. Dubovik and M. King, “A Flexible Inversion Algorithm for Retrieval Aerosol Optical Properties from Sun and Sky Radiance Measurements,” J. Geophys. Res., D 105(16), 20673–20696 (2000).

    ADS  Article  Google Scholar 

  18. P. Hignett, J. P. Taylor, P. N. Francis, and M. D. Glew, “Comparison of Observed and Modeled Direct Aerosol Forcing during TARFOX,” J. Geophys. Res., D 104(2), 2279–2287 (1999).

    ADS  Article  Google Scholar 

  19. P. B. Russel, J. M. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, P. Durkee, and P. V. Hobbs, “Aerosol-Induced Radiative Flux Changes off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sun Photometer and in situ Data with those Measured by Airborne Pyranometer,” J. Geophys. Res., D 104(2), 2289–2307 (1999).

    ADS  Article  Google Scholar 

  20. I. A. Podgorny, W. Conant, V. Ramanathan, and K. Satheesh, “Aerosol Modulation of Atmospheric and Surface Solar Heating over the Tropical Indian Ocean,” Tellus Ser. B 3(52), 947–958 (2000).

    ADS  Article  Google Scholar 

  21. T. F. Eck, B. N. Holben, O. Dubovik, A. Smirnov, I. Slutsker, J. M. Lobert, and V. Ramanathan, “Column-Integrated Aerosol Optical Properties over Maldives during the Northeast Monsoon for 1998–2000,” J. Geophys. Res., D 106(22), 28555–28566 (2001).

    ADS  Article  Google Scholar 

  22. D. Tanre, J. Haywood, J. Pelon, J. F. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. J. Highwood, and G. Myhre, “Measurement and Modeling of the Saharan Dust Radiative Impact: Overview of the Saharan Dust Experiment (SHADE),” J. Geophys. Res., D 108(18), 8574 (2003).

    ADS  Article  Google Scholar 

  23. T. S. Bates, B. J. Huebert, J. L. Gras, F. B. Griffiths, and P. A. Durkee, “International Global Atmospheric Chemistry (IGAC) Project’s First Aerosol Characterization Experiment (ACE 1): Overview,” J. Geophys. Res., D 103(13), 16297–16318 (1998).

    ADS  Article  Google Scholar 

  24. B. T. Huebert, T. Bates, P. B. Russell, G. Y. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, “An Overview of ACE-Asia: Strategies for Quantifying the Relationships between Asian Aerosols and Their Climatic Impacts,” J. Geophys. Res., D 108(23), 8633, doi: 10.1029/2003JD003550 (2003)

    ADS  Article  Google Scholar 

  25. H. Yu, R. E. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. N. Holben, “The Direct Radiative Effect of Aerosols as Determined from a Combination of MODIS Retrievals and GOCART Simulations,” J. Geophys. Res., D 109(3), doi: 10.1029/2003JD003914 (2004).

    Google Scholar 

  26. Z. Jin and K. Stamnes, “Radiative Transfer in Nonuniformly Refracting Layered Media: Atmosphere-Ocean System,” Appl. Opt. 33(3), 431–442 (1994).

    ADS  Article  Google Scholar 

  27. Z. Jin, T. P. Charlock, and K. Rutledge, “Analysis of Broadband Solar Radiation and Albedo over the Ocean Surface at COVE,” J. Atmos. Oceanic Technol. 19(10), 1585–1601 (2002).

    ADS  Article  Google Scholar 

  28. S. W. Kim, S. C. Yoon, J. Kim, and S. Y. Kim, “Seasonal and Monthly Variations of Columnar Aerosol Optical Properties over East Asia Determined from Multi-Year MODIS, LIDAR and AERONET Sun/Sky Radiometer Measurements,” Atmos. Environ. 41(8), 1634–1651 (2007).

    MathSciNet  ADS  Article  Google Scholar 

  29. K. Ya. Kondrat’ev, Al. A. Grigor’ev, O. M. Pokrovskii, and E. V. Shalina, Space Remote Sounding of Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  30. C. Tomasi, V. Vitale, A. Lupi, C. D. Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G. H. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Strom, C. Toledano, V. E. Cachorro, P. Ortiz, A. M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski, and T. Yamanouchi, “Aerosols in Polar Regions: A Historical Overview Based on Optical Depth and in Situ Observations,” J. Geophys. Res. 112, D16205 (2007).

    ADS  Article  Google Scholar 

  31. C. Tomasi, A. Lupi, M. Mazzola, R. S. Stone, E. G. Dutton, A. Herber, V. F. Radionov, B. N. Holblen, M. G. Sorokin, S. M. Sakerin, S. A. Terpugova, P. S. Sobolewski, C. Lanconelli, B. H. Petkov, M. Busetto, and V. Vitale, “An Update on Polar Aerosol Optical Properties Using POLAR-AOD and Other Measurements Performed during the International Polar Year,” Atmos. Environ. 52, 1016 (2012).

    Google Scholar 

  32. V. F. Radionov, E. N. Rusina, S. M. Sakerin, E. E. Sibir, and A. V. Smirnov, “Components of Atmospheric Radiative Regime and Aerosol-Optical Parameters in Antarctica during MPG against their Long-Term Variability,” in Meteorological and Geophysical Studies, Ed. by G.V. Alekseev (Paulsen, Moscow, 2011), pp. 158–169 [in Russian].

    Google Scholar 

  33. S. M. Sakerin, D. M. Kabanov, V. F. Radionov, I. A. Slutsker, A. V. Smirnov, S. A. Terpugova, and B. N. Holben, “About Investigation Results on the Atmosphere Aerosol Optical Depth in Circumnavigation around Antarctica (the 53d RAE),” Atmos. Ocean. Opt. 21(12), 900–904 (2008).

    Google Scholar 

  34. S. M. Cakerin, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, V. V. Pol’kin, A. B. Tikhomirov, N. I. Vlasov, V. F. Radionov, A. V. Smirnov, B. N. Kholben, I. A. Slutsker, and L. P. Golobokova, “Investigation Results on Aerosol Parameters in the 52nd RAE,” Probl. Arkt. Antarkt., No. 77, 67–75 (2007).

    Google Scholar 

  35. H. Gadhavi and A. Jayaraman, “Aerosol Characteristics and Aerosol Radiative Forcing over Maitri, Antarctica,” Current Sci. 86(2), 296–304 (2004).

    Google Scholar 

  36. M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Amer. Meteorol. Soc. 79(5), 831–844 (1998).

    ADS  Article  Google Scholar 

  37. I. M. Nasrtdinov, T. B. Zhuravleva, S. M. Sakerin, T. V. Bedareva, D. M. Kabanov, and T.Yu. Chesnokova, “Comparison of Measured and Model Solar Radiation Fluxes Near the Underlying Surface in Clear Air,” in Proc. of the XVIII International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics”, Irkutsk, July 2–5, 2012 (Publishing House of IAO SB RAS, Tomsk, 2012), CD-ROM [in Russian].

    Google Scholar 

  38. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, and D. M. Kabanov, “Specific Features of the Spatial Distribution of the Atmospheric Aerosol Optical Depth in the Asian Part of Russia,” Opt. Atmosf. Okeana 25(6), 484–490 (2012).

    Google Scholar 

  39. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, G. I. Kornienko, B. Holben, and A. Smirnov, “Atmospheric Aerosol Optical Depth in Far East Primorye According to Data of Satellite and Ground-Based Observations,” Opt. Atmosf. Okeana 24(8), 654–660 (2011).

    Google Scholar 

  40. K. Y. Kim, Y. J. Kim, and S. J. Oh, “Visibility Impairment during Yellow Sand Periods in the Urban Atmosphere of Kwangju, Korea,” Atmos. Environ. 35(30), 5157–5167 (2001).

    ADS  Article  Google Scholar 

  41. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

    ADS  Article  Google Scholar 

  42. S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library, 1998, Dedicated CD-ROM. Version 1.2 (http://spe-clib.jpl.nasa.gov).

    Google Scholar 

  43. T. B. Zhuravleva, “Simulation of Solar Radiative Transfer under Different Atmospheric Conditions. Part I. The Deterministic Atmosphere,” Atmos. Ocean. Opt. 21(2), 81–95 (2008).

    Google Scholar 

  44. T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. Part 1. Method of Calculation and Choice of Input Parameters,” Atmos. Ocean. Opt. 22(1), 63–73 (2009).

    Article  Google Scholar 

  45. J. H. Seinfeld, G. R. Carmichael, R. Arimoto, W. C. Conant, F. J. Brechtel, T. S. Bates, T. A. Cahill, A. D. Clarke, S. J. Doherty, P. J. Flatau, B. J. Huebert, J. Kim, K. M. Markowicz, P. K. Quinn, L. M. Russell, P. B. Russell, A. Shimizu, Y. Shinozuka, C. H. Song, Y. Tang, I. Uno, A. M. Vogelmann, R. J. Weber, J. Woo, and X. Y. Zhang, “ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution,” Bull. Amer. Meteorol. Soc. 85(3), 367–380 (2004).

    ADS  Article  Google Scholar 

  46. G. Myhre, N. Bellouin, T. F. Bergle, T. K. Berntsen, O. Boucher, A. Grini, I. S. A. Isaksen, M. Johnsrud, M. I. Mishchenko, F. Stordal, and D. Tanre, “Comparison of the Radiative Properties and Direct Radiative Effect of Aerosols from a Global Aerosol Model and Remote Sensing Data over Ocean,” Tellus, Ser. B 59(1), 115–129 (2007).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.M. Nasrtdinov, T.B. Zhuravleva, S.M. Sakerin, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nasrtdinov, I.M., Zhuravleva, T.B. & Sakerin, S.M. Estimates of the aerosol radiative forcing for three regions of World Ocean. Atmos Ocean Opt 26, 517–523 (2013). https://doi.org/10.1134/S1024856013060109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013060109

Keywords

  • Aerosol Optical Depth
  • Solar Zenith Angle
  • Asymmetry Factor
  • Single Scattering Albedo
  • Scatter Phase Function