Atmospheric and Oceanic Optics

, Volume 26, Issue 6, pp 517–523 | Cite as

Estimates of the aerosol radiative forcing for three regions of World Ocean

  • I. M. Nasrtdinov
  • T. B. Zhuravleva
  • S. M. Sakerin
Atmospheric Radiation, Optical Weather, and Climate


We present the results of numerical simulation of aerosol radiative forcing for three regions of the World Ocean: the coastal zone of Antarctica, the Sea of Japan, and the Sea of Darkness. The aerosol radiative forcing for separate regions of ocean was simulated using ship-based measurements of aerosol optical depth and atmospheric water vapor content. Data on the single scattering albedo and asymmetry factor of scattering phase function are presented according to model simulations (coastal zone of Antarctica: OPAC model) and multiyear observations at AERONET photometer stations (the Sea of Japan: Noto site; and the Sea of Darkness: Cape Verde site). The calculations showed that the cooling effect of aerosol over Sea of Japan/Sea of Darkness at the atmospheric boundaries increases by about an order of magnitude as compared to the clean atmosphere near Antarctica. At the same time, the daily average values of the aerosol radiative forcing vary as follows: from −2.3 (Antarctica) to −30.3/−32.6 W/m2 (Sea of Japan/Sea of Darkness) at the surface level and from −1.9 to −16.1/−18 W/m2 at the top of the atmosphere. The estimates obtained agree reasonably well with the results of other authors.


Aerosol Optical Depth Solar Zenith Angle Asymmetry Factor Single Scattering Albedo Scatter Phase Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ya. Kondrat’ev, “Aerosol as a Climate-Forming Component of the Atmosphere. 2. Direct and Indirect Impact on Climate,” Atmos. Ocean. Opt. 15(4), 267–284 (2002).Google Scholar
  2. 2.
    K. Ya. Kondrat’ev, “Aerosol and Climate sTudies: Current State and Prospects. 3. Aerosol Radiative Forcing,” Atmos. Ocean. Opt. 19(7), 505–513 (2006).Google Scholar
  3. 3.
    J. Haywood and O. Boucher, “Estimates of the Direct and Indirect Radiative Forcing due to Tropospheric Aerosols: A Review,” Rev. Geophys. 38(4), 513–543 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    M. Zhou, H. Yu, R. Dickinson, O. Dubovik, and B. Holben, “A Normalized Description of the Direct Effect of Key Aerosol Types on Solar Radiation As Estimated from AERONET Aerosols and MODIS Albedo,” Geol. Soc. Am. Bull. 110, D19202 (2005).Google Scholar
  5. 5.
    H. Yu, Y. Kaufman, M. Chin, G. Feingold, L. Remer, T. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. Reddy, M. Schulz, T. Takemura, and M. Zhou, “A Review of Measurement-Based Assessments of the Aerosol Direct Radiative Effect and Forcing,” Atmos. Chem. Phys., No. 6, 613–666 (2006).Google Scholar
  6. 6.
    W. D. Collins, Ph. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, C. T. Beck, and Ch. S. Zender, “Simulation of Aerosol Distributions and Radiative Forcing for INDOEX: Regional Climate Impacts,” J. Geophys. Res., D 107(19), 8028 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Transmission of Atmospheric Column in the Visible and Near-IR Spectral Regions (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  8. 8.
    S. M. Sakerin, D. M. Kabanov, A. V. Smirnov, and B. N. Holben, “Aerosol Optical Depth of the Atmosphere Over Ocean in the Wavelength Range 0.37–4 μM,” Int. J. Remote Sens. 29(9) (2008).Google Scholar
  9. 9.
    A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical Properties of Atmospheric Aerosol in Maritime Environments,” J. Atmos. Sci. 59(3) Part 1, 501–523 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. Smirnov, B. N. Holben, I. Slutsker, D. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin, A. Macke, P. Croot, G. Zibordi, P. Quinn, J. Sciare, S. Kinne, M. Harvey, T. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J. Goes, D. A. Seigel, P. Larouche, V. F. Radionov, P. Goloub, K. Krishnamoorthy, R. Matarrese, L. Robertson, and F. Jourdin, “Maritime Aerosol Network As a Component of Aerosol Robotic Network,” J. Geophys. Res. 114, D06204 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. Smirnov, B. N. Holben, D. M. Giles, I. Slutsker, N.T. O’Neill, T. F. Eck, A. Macke, P. Croot, Y. Courcoux, S. M. Sakerin, T. J. Smyth, T. Zielinski, G. Zibordi, J. I. Goes, M. Harvey, P. K. Quinn, N. B. Nelson, V. F. Radionov, C. M. Duarte, R. Losno, J. Sciare, K. Voss, S. Kinne, N. R. Nalli, E. Joseph, Moorthy K. Krishna, D. Covert, S. K. Gulev, G. Milinevsky, P. Larouche, S. Belanger, E. Horne, M. Chin, L. A. Remer, R. A. Kahn, J. S. Reid, M. Schulz, C. L. Heald, J. Zhang, K. Lapina, R. G. Kleidman, J. Griesfeller, B. J. Gaitley, Q. Tan, and T. L. Diehl, “Maritime Aerosol Network As a Component of AERONET-First Results and Comparison with Global Aerosol Models and Satellite Retrievals,” Atmos. Measur. Techn., No. 4, 583–597 (2011).Google Scholar
  12. 12.
    S. M. Sakerin and D. M. Kabanov, “Spatial Distribution of an Aerosol Component of Atmospheric Transmittance over the Atlantic Ocean,” Atmos. Ocean. Opt. 12(2), 93–98 (1999).Google Scholar
  13. 13.
    S. M. Sakerin and D. M. Kabanov, “Spatial Inhomogeneities and the Spectral Behavior of Atmospheric Aerosol Optical Depth over the Atlantic Ocean,” J. Atmos. Sci. 59(3), Part 1, 484–500 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    D. M. Kabanov and S. M. Sakerin, “Transmission of the Atmosphere over the Atlantic Ocean. Part 1. Spatial Inhomogeneities of the Transmission,” Atmos. Ocean. Opt. 13(8), 657–663 (2000).Google Scholar
  15. 15.
    S. M. Sakerin, A. N. Pavlov, O. A. Bukin, D. M. Kabanov, G. I. Kornienko, V. V. Pol’kin, S. Yu. Stolyarchuk, Yu. S. Turchinovich, K. A. Shmirko, and A. Yu. Mayor, “Results of an Integrated Aerosol Experiment in the Continent-Ocean Transition Zone (Primorye and the Sea of Japan); Part 1: Variations of Atmospheric Aerosol Optical Depth and Vertical Profiles,” Atmos. Ocean. Opt. 24(1), 64–73 (2011).CrossRefGoogle Scholar
  16. 16.
    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).CrossRefGoogle Scholar
  17. 17.
    O. T. Dubovik and M. King, “A Flexible Inversion Algorithm for Retrieval Aerosol Optical Properties from Sun and Sky Radiance Measurements,” J. Geophys. Res., D 105(16), 20673–20696 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    P. Hignett, J. P. Taylor, P. N. Francis, and M. D. Glew, “Comparison of Observed and Modeled Direct Aerosol Forcing during TARFOX,” J. Geophys. Res., D 104(2), 2279–2287 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    P. B. Russel, J. M. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, P. Durkee, and P. V. Hobbs, “Aerosol-Induced Radiative Flux Changes off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sun Photometer and in situ Data with those Measured by Airborne Pyranometer,” J. Geophys. Res., D 104(2), 2289–2307 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    I. A. Podgorny, W. Conant, V. Ramanathan, and K. Satheesh, “Aerosol Modulation of Atmospheric and Surface Solar Heating over the Tropical Indian Ocean,” Tellus Ser. B 3(52), 947–958 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    T. F. Eck, B. N. Holben, O. Dubovik, A. Smirnov, I. Slutsker, J. M. Lobert, and V. Ramanathan, “Column-Integrated Aerosol Optical Properties over Maldives during the Northeast Monsoon for 1998–2000,” J. Geophys. Res., D 106(22), 28555–28566 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    D. Tanre, J. Haywood, J. Pelon, J. F. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. J. Highwood, and G. Myhre, “Measurement and Modeling of the Saharan Dust Radiative Impact: Overview of the Saharan Dust Experiment (SHADE),” J. Geophys. Res., D 108(18), 8574 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    T. S. Bates, B. J. Huebert, J. L. Gras, F. B. Griffiths, and P. A. Durkee, “International Global Atmospheric Chemistry (IGAC) Project’s First Aerosol Characterization Experiment (ACE 1): Overview,” J. Geophys. Res., D 103(13), 16297–16318 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    B. T. Huebert, T. Bates, P. B. Russell, G. Y. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, “An Overview of ACE-Asia: Strategies for Quantifying the Relationships between Asian Aerosols and Their Climatic Impacts,” J. Geophys. Res., D 108(23), 8633, doi: 10.1029/2003JD003550 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    H. Yu, R. E. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. N. Holben, “The Direct Radiative Effect of Aerosols as Determined from a Combination of MODIS Retrievals and GOCART Simulations,” J. Geophys. Res., D 109(3), doi: 10.1029/2003JD003914 (2004).Google Scholar
  26. 26.
    Z. Jin and K. Stamnes, “Radiative Transfer in Nonuniformly Refracting Layered Media: Atmosphere-Ocean System,” Appl. Opt. 33(3), 431–442 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Jin, T. P. Charlock, and K. Rutledge, “Analysis of Broadband Solar Radiation and Albedo over the Ocean Surface at COVE,” J. Atmos. Oceanic Technol. 19(10), 1585–1601 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    S. W. Kim, S. C. Yoon, J. Kim, and S. Y. Kim, “Seasonal and Monthly Variations of Columnar Aerosol Optical Properties over East Asia Determined from Multi-Year MODIS, LIDAR and AERONET Sun/Sky Radiometer Measurements,” Atmos. Environ. 41(8), 1634–1651 (2007).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    K. Ya. Kondrat’ev, Al. A. Grigor’ev, O. M. Pokrovskii, and E. V. Shalina, Space Remote Sounding of Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  30. 30.
    C. Tomasi, V. Vitale, A. Lupi, C. D. Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G. H. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Strom, C. Toledano, V. E. Cachorro, P. Ortiz, A. M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski, and T. Yamanouchi, “Aerosols in Polar Regions: A Historical Overview Based on Optical Depth and in Situ Observations,” J. Geophys. Res. 112, D16205 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    C. Tomasi, A. Lupi, M. Mazzola, R. S. Stone, E. G. Dutton, A. Herber, V. F. Radionov, B. N. Holblen, M. G. Sorokin, S. M. Sakerin, S. A. Terpugova, P. S. Sobolewski, C. Lanconelli, B. H. Petkov, M. Busetto, and V. Vitale, “An Update on Polar Aerosol Optical Properties Using POLAR-AOD and Other Measurements Performed during the International Polar Year,” Atmos. Environ. 52, 1016 (2012).Google Scholar
  32. 32.
    V. F. Radionov, E. N. Rusina, S. M. Sakerin, E. E. Sibir, and A. V. Smirnov, “Components of Atmospheric Radiative Regime and Aerosol-Optical Parameters in Antarctica during MPG against their Long-Term Variability,” in Meteorological and Geophysical Studies, Ed. by G.V. Alekseev (Paulsen, Moscow, 2011), pp. 158–169 [in Russian].Google Scholar
  33. 33.
    S. M. Sakerin, D. M. Kabanov, V. F. Radionov, I. A. Slutsker, A. V. Smirnov, S. A. Terpugova, and B. N. Holben, “About Investigation Results on the Atmosphere Aerosol Optical Depth in Circumnavigation around Antarctica (the 53d RAE),” Atmos. Ocean. Opt. 21(12), 900–904 (2008).Google Scholar
  34. 34.
    S. M. Cakerin, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, V. V. Pol’kin, A. B. Tikhomirov, N. I. Vlasov, V. F. Radionov, A. V. Smirnov, B. N. Kholben, I. A. Slutsker, and L. P. Golobokova, “Investigation Results on Aerosol Parameters in the 52nd RAE,” Probl. Arkt. Antarkt., No. 77, 67–75 (2007).Google Scholar
  35. 35.
    H. Gadhavi and A. Jayaraman, “Aerosol Characteristics and Aerosol Radiative Forcing over Maitri, Antarctica,” Current Sci. 86(2), 296–304 (2004).Google Scholar
  36. 36.
    M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Amer. Meteorol. Soc. 79(5), 831–844 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    I. M. Nasrtdinov, T. B. Zhuravleva, S. M. Sakerin, T. V. Bedareva, D. M. Kabanov, and T.Yu. Chesnokova, “Comparison of Measured and Model Solar Radiation Fluxes Near the Underlying Surface in Clear Air,” in Proc. of the XVIII International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics”, Irkutsk, July 2–5, 2012 (Publishing House of IAO SB RAS, Tomsk, 2012), CD-ROM [in Russian].Google Scholar
  38. 38.
    S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, and D. M. Kabanov, “Specific Features of the Spatial Distribution of the Atmospheric Aerosol Optical Depth in the Asian Part of Russia,” Opt. Atmosf. Okeana 25(6), 484–490 (2012).Google Scholar
  39. 39.
    S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, G. I. Kornienko, B. Holben, and A. Smirnov, “Atmospheric Aerosol Optical Depth in Far East Primorye According to Data of Satellite and Ground-Based Observations,” Opt. Atmosf. Okeana 24(8), 654–660 (2011).Google Scholar
  40. 40.
    K. Y. Kim, Y. J. Kim, and S. J. Oh, “Visibility Impairment during Yellow Sand Periods in the Urban Atmosphere of Kwangju, Korea,” Atmos. Environ. 35(30), 5157–5167 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,” J. Atmos. Sci. 59(3), 590–608 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library, 1998, Dedicated CD-ROM. Version 1.2 ( Scholar
  43. 43.
    T. B. Zhuravleva, “Simulation of Solar Radiative Transfer under Different Atmospheric Conditions. Part I. The Deterministic Atmosphere,” Atmos. Ocean. Opt. 21(2), 81–95 (2008).Google Scholar
  44. 44.
    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. Part 1. Method of Calculation and Choice of Input Parameters,” Atmos. Ocean. Opt. 22(1), 63–73 (2009).CrossRefGoogle Scholar
  45. 45.
    J. H. Seinfeld, G. R. Carmichael, R. Arimoto, W. C. Conant, F. J. Brechtel, T. S. Bates, T. A. Cahill, A. D. Clarke, S. J. Doherty, P. J. Flatau, B. J. Huebert, J. Kim, K. M. Markowicz, P. K. Quinn, L. M. Russell, P. B. Russell, A. Shimizu, Y. Shinozuka, C. H. Song, Y. Tang, I. Uno, A. M. Vogelmann, R. J. Weber, J. Woo, and X. Y. Zhang, “ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution,” Bull. Amer. Meteorol. Soc. 85(3), 367–380 (2004).ADSCrossRefGoogle Scholar
  46. 46.
    G. Myhre, N. Bellouin, T. F. Bergle, T. K. Berntsen, O. Boucher, A. Grini, I. S. A. Isaksen, M. Johnsrud, M. I. Mishchenko, F. Stordal, and D. Tanre, “Comparison of the Radiative Properties and Direct Radiative Effect of Aerosols from a Global Aerosol Model and Remote Sensing Data over Ocean,” Tellus, Ser. B 59(1), 115–129 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. M. Nasrtdinov
    • 1
  • T. B. Zhuravleva
    • 1
  • S. M. Sakerin
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations